Contents

CONTENTS ... bbb b bbb bbb 1
TABLE OF FIGURES. ...ttt s b s 3
INTRODUCTION ..ot bbb bbb bbb 5
N 1O 5
BACKGROUND......ititt i bbb bbb 6
SAD-SAM L. bbb

CURRENT SYSTEMS
Xerox Polyglot Photocopier
AVEINEINUS ...ttt ettt seas et ae s see s e b £ b e £ s eE e eeae b re R s e S A b e e b e se b et et b e bt esrnben et enaas

CHOMSKIAN LINGUISTICS....cuvtreerenseesseesnesesssssssssssssssssssessassessssssssssssssssssssssassassassessessesssssssasssssassassassassessesssssssnsans
SYNTACTIC STRUCTURES. ...cvtttreeseeeseesnesessessssssssssssssssessassessessesssssssssssssassassassassessessesssssssssssssastassassessessessesssnsans
THE CONCEPL Of SLTUCLUE ...ttt ettt bbb s bbb s s st b s s st s s nante
GENERATIVE GRAMMAR.ctrititsteseesseessesssssssssssssssssssssessassessessesssssssssssssassassassassessessessessssasssssassassassessessessesssnsans
10T [0 1y T TR
TRANSFORMATIONAL RULES
Auxiliary Verbs
X-BAR THEORYovvvrrerrerrrernennens
g THEORY (THETA THEORY) ouctveereeetresreeesessssssssssssssssessassessessessssssssssssssssassassassessessesssssssssssssassassassessessessssssnsans
GOVERNMENT BINDING....cuttiititseesensseessesessessssssssssssssssessassessessessssssssssssssssassassassessessesssssssssssssassassassessessessesssnsans
DEEP STRUCTUREvtittitstssisssssssssesssssssssssssssssssssssssessessessssssssesssssssassassassassessessessessessssastassassassassassessessesssssssnsanses

LEXTCON ...t bbb bbb bbb 37

MEANING PROPERTIES
Lexical ambiguity................
ThE ENCYCIOPAEIC VIEW ...ttt sttt bbbt s s s e nantes 38
The COMPONENLIAL VIEW ...ttt st bbb ae bbb st b s s st s s anantes 39
LA LCIAN 0] 0 TH = LY=o 39

PARSING ISSUESAND TECHNIQUES ...t 40

BACKTRACKING
Depth-first.....ooeeeeeveeennns
T2t L g T R

EFFICIENCY TECHNIQUES
FINDING A FOOT HOLD ...otieiriresesesesesesesesesesesestsesesese s s sesssesesess st ss s s st ss st se s s sene st sssssssssssssssssssssessssnsssssssnsneas

IMIOVING ON ..ttt E 88 A £ £ 4 e e e A £ e e £ S e e ee b e neeb b e e et e e e en s e
BOTTOM-UP PARSER...........
CASE FILTER...ccceeerereierennen
OTHER EXPERIMENTS

Program 1
Program2
Program3
Program4
Program 5
Program6
LEXICON.
BoTTOM-UP
Program 1
Program2
Program3
CASEFILTER
Program 1 - Original attemPLcccccuerriireneresereresie s sesssssesssss st ssssssssessessssssssssssssesssssssesssssseses
Program2 -- amMENAEd.........cccvuireirierier ettt a s s st s e s aesensnanaenes
GOVERNMENT BINDING PARSER.......coetuererreieereesesiersesesssersssesesessesesssesesnens
PHRASE STRUCTURE DIAGRAM PRINTER
URLS OF INTEREST ...uttteueuesessesesssessssesesessesesssessesessssssssesesssessssssssesssssassessssessssssssesssssssnesssssessssssssessssssssesssssssesses

Table of Figures

FGURE 1-- SHRDLU MODULES

FIGURE 2 -- A SCREEN SHOT FROM SHRDLU.

FIGURE 3-- A SYNTACTIC TREE STRUCTURE

FIGURE 4 -- SYNTACTIC AMBIGUITY

FIGURE 5 --PHRASE STRUCTURE BOX DIAGRAM

FIGURE 6 - ACTIVE TO PASSIVE TRANSFORMATION TREE
FIGURE 7 -- TRANSFORMATIONAL TREE (PARTICLE MOVEMENT)
FIGURE 8 -- STRUCTURAL DEFINITION OF SUBJECT AND OBJECT
FIGURE 9 --THREE BRANCHED VERB PHRASE

FIGURE 10 --X-BAR VERB PHRASE

FIGURE 11 --CHOMSKY’ S (1965) THEORY OF LANGUAGE

FIGURE 12 -- A PARSE TREE

FIGURE 13 -- A PARSE TREE (DETERMINER)

FIGURE 14 -- A PARSE TREE (NOUN PHRASE)

FIGURE 15 -- A PARSE TREE (PRE-EMPTED VERB PHRASE)
FIGURE 16 -- A PARSE TREE (SENTENCE)

FIGURE 17 -- A PARSE TREE (INCOMPLETE NOUN PHRASE)

10

RBB

23

RRHESEELERY

Introduction

| have dways been interested in language since my high school days, when | learned French
and German. Unfortunatdly | didn’t continue my language studies as | progressed to A levels
and my degree. Recently my interest in language has been fired again, with my increesing use
of the Internet, | found speskers of a multitude of tongues, from Hebrew, Portuguese,

Finnish, Norwegian, Icdandic, French and German to name afew.

| am fascinated by the number of languages spoken in the world and wish to understand
them better. When this project was suggested by Craig Duffy | immediately looked at it as

an opportunity to increase my knowledge and understanding in an area that interests me.

Aims
In undertaking this project | knew that | would be expected to Implement some form of

NLP program and comment on what | had learned from this project. My Aims therefore
are:
Learn about linguigticsin generd
Learn of Chomsky’ s theories and how they might be implemented ona computer
learn about Naturd Language Processing techniques and appropriate programming

languages for use in Natural Language Processng

| will of course not be able to produce a complete Naturd Language Processing system in
the restricted time that | have available. | have decided to implement a few modules that

could make up part of alarger Naturdl Language Processing system.

Background
Early work on Natural Language Processing assumed that the syntactic information in the
sentence, dong with the meaning of a finite set of words was sufficient to perform certain

language tasks. In particular answering questions posed in English.

Generdly, these early programs were limited to dialogues about restricted domains in
ample English and ignored the problems faced when usng unredricted English. These
programs bridge the gap between the early machine trandation attempts of the 1950s and
current semantic-based naturd language systems. Some of these programs are shown

below, showing their successes and some of thelr faults.

SAD-SAM
SAD-SAM gands for Syntactic Appraiser and Diagrammer - Semantic Analysing Machine.

SAD-SAM was programmed by Robert Lindsay in 1963, it was written in IPL the list

processng language.

The program accepts a vocabulary of Basic English (gpproximately 1,700 words) and
follows a smple context-free grammar. The SAD module parses the input from left to right,
builds a derivation tree structure and passes this structure on to SAM, which extracts the
semanticaly rdevant (kinship reated) information in order to build the family tree and find
the answers to the questions. Though the subset of English processed by SAD is quite

impressive in extent and complexity of structure, only kinship relations are consdered by

SAM; dl other semantic information is ignored SAM does not depend on the order of the

input for the building of the family tree. For example if SAM isfirg told that:

Adde and Rachd are the daughters of Marvin and later that Laurie and Edra are the

daughters of Eva.

Two different family units will be built, but they will be collapsed into one if we later find that

Rachel and Edra are Sgters (multiple marriages are illegd).

SAM cannot handle certain ambiguities. The sentence Joe plays in his Aunt Jane's yard
could mean that Jane is ether the Sgter, or dgter-in-law of Joe's father but SAM can only
assgn one connection a a time and cannot use the ambiguous information: SAM permits

goring definite links but not possible inferences.

SHRDLU
SHRDLU written by Terry Winograd, caused a tremendous stir in 1972, because of the
fairly successful way it modelled human language, and is how seen as aclassic example of a

modular model of language underganding.

SHRDLU was an early attempt to introduce different types of knowledge into a computer
program deding with language. SHRDLU was modular because it proposed separate

modules for syntax, semantics, and world knowledge. SHRDLU was dso an interactive

modd because it was possible for the modules to cdl up information from other modules

when necessary to contribute to the find interpretation of a sentence.

All the input sentences were ingtructions for moving different types of blocks around in amdll,
amplified world, in which the blocks resded. This world was displayed on the computer
screen. The blocks could be moved around by a pointer, changing the position of the blocks

on the screen.

The figure below shows the three modules incorporated into SHRDLU. The Syntax Module
contains syntactic rules formulated as augmented trangtion networks. The Semantics
Module contains a lexicon and semantic sdection rules for building up semantic
representations, and the Blocks Module contains general knowledge about the position of

the blocks at any onetime.

SYNTAX FVANTICS BLOKS
MCDULE MCDULE MCDULE
 J
Syradic Samatic
INUTS ———P» —» —— OUTRUTS
rocesing frocesing

Figure 1 -- SHRDLU modules

Winograd argues that the modules must be able to pass information to each other when
required. It is easy to see the need to consult different modules by considering what could
happen when the computer received the command Put the green pyramid on the block in
the box. There are two possble ways to group the noun phrases in the sentence, as

indicated by the position of the brackets:

1. Put (the green pyramid) on (the block in the box), i.e. move the green pyramid, and place
it on top of the block which is dready in the box.
2. Put (the green pyramid on the block) in (the box), i.e. move the green pyramid currently

on top of ablock and place it on the floor of the box.

In order to ded with potentidly ambiguous sentences like Put the green pyramid on the
block in the box, the Syntax Module in SHRDLU can cdl on the Semantics Module and
the Block Module to settle which of the two possible syntactic andyses is correct. For
instance, the Semantics Module would confirm that the verb put, when combined with the
names of two blocks can be constructed as a meaningful sentence taking the meaning of
placing one block on top of another. At this point reference would be made to the Blocks
Module. Using it's knowledge of the Block World, it would report that either interpretation
is possible because a green pyramid is currently on top of a red block, and so could be
moved from there, to the floor of the box; equdly, the green pyramid could be moved from
it's current position and place on top of the block in the box. SHRDLU would then ask the

operator which was the intended meaning of the sentence.

Rag

‘--.—-_--...

thn-l_ Gresn /

Qrden

Figure 2 -- A Screen Shot from SHRDLU.

While the Syntax Module is atempting to build up a syntactic structure for a sentence, it can
cdl in the Semantics and Blocks Modules in order to resolve potentid ambiguities. Thus,
rather than relying solely on the syntactic back up and look forward procedures, interaction
with semantic processng and even with the Blocks Module, it is possible to short circuit

semantic interpretations.

SHRDLU isamodd in which dl the modules are equaly important and on the same levd,
compared with drictly hierarchicd models. SHRDLU has some of the characteristics of
independent processng modules and some of the characterigtics of an interactive modd.
The most important characteristic of a heterarchicd model is that processng can be

interrupted in order to consult other processing modules. In later versions of Winograd's

10

theory there was an even greater emphass on the need to understand how individua
sentences relate to other sentences, that had been entered before, or perhaps might be

entered after the current sentence.

1

Current Systems

There are many areas where computationd linguigics has been implemented some in
unlikely places, others in more traditiond areas. On the following pages | hope to show
some of the wdl-know and some of the less wel-know NLP sysems that are in

development and use today.

Xerox Polyglot Photocopier
From next March Xerox intend to display a polyglot photocopier at their Grenoble |abs. The
photocopier draws from research into language engineering, including Information

Extraction. Monica Betrammetti of Xerox research was quoted as saying

“Youwill be able to take acopy of aFrench newspaper and smply highlight or
circle the words you don’t understand. Y ou will put it on the copier, pressthe
‘trandate’ button, and it will return a copy with those words trandated and

indexed.”

Aventinus

Professor Yorick Wilks of Sheffidd Universty is currently working with Europol on a
project caled Aventinus. Aventinus trandates and processes police records and reports.
The main am of the project is for al European police forces to be able to search through

each others recordsin search of criminds possble diases, or previoudy committed crimes.

! Theword crunchers. The Guardian On-line supplement November 27 1997 Page 3

Policespeak
Researchers a British Telecom are invedtigating a bilingud spoken communication system

for use by the French and British police forces, involving research on the sub-language of
police messages. The idea is that this sysem would convey messages about possible
problems, or criminds to police forces in the other country. Particularly useful now, with the

growing use of the channd tunnd.

Ntran

Ntran is an English-Jgpanese system which uses active disambiguation as a trandation
technique. It was developed at UMIST (Universty of Manchester Ingtitute of Science and
Technology). The paticularly interesting thing the way in which active disambiguation is
used by Ntran. Active disambiguation is used on the English source text. When further
ambiguities arise during the lexica trandfer between English and Japanese, the system asks
the user to choose certain phrases, based on English paraphrases of the Japanese text. This

means that a person with no knowledge of Japanese at dl could quite easly trandate

English to Japanee.

Statistics-based Machine Trandation at | BM

Research a IBM’s labs in Yorktown heights, New York, has shown a modest amount of
success, using datigica andysis of the text. Many systems use dtatistica data to guide and
help in rule writing and the formulation of routines. Some systems however use the gatidticd
datain lexica sdection, and disambiguation. IBM’s project however uses satistica data as

the only tool for andysing the text and generating the output. The method involved matching

sentences in both English and French. The probabilities were estimated by matching bigrams

(two consecutive words).

Two sets of probabilities were caculated. One for each individua English word and its
corresponding two French words. For example the corresponds to the French le with a
probability of .610, to la with .178, to I’ with 0.83 to les with 0.23, to ce with 0.13, to il
with 0.12 and so on. The other set of probabilities were based on whether two , one or zero
French words correspond to a single word. For example the corresponds to one French
word with a probability of .871, to zero French words with .124 and to two French words
with a probability of .004. The trandation system were tested usng 73 new French
sentences. A quite limited vocabulary of the 1000 most frequently used English words and
the corresponding 1700 most frequently used French words. The results were classified as
ather: (a) exact ,(b) dternative (same meaning but in dightly different words), (c) different
(legitimate trandation but not conveying the same meaning), (d) wrong (intdligible result, but

not the trandation of the French), (€) ungrammatica (no sense conveyed).

Only 5% of the trandations came into the ‘exact’ category; however, trandations were
congdered reasonable if the fell into the firgt three categories (exact, dternate and different).
When this criterion is used the system performs with a 48% success rate. Improvements are
expected when a larger body of text is used for the initid probabilities, by probabilistic
segmentation of sentences into phrases, by using trigrams as well as bigrams, and including

data on inflectiond morphology.

14

Statigtical based techniques used in conjunction with linguistic methods will be a feature of

many machine trandation systemsto come.

Theory
Chomskian Linguistics

In this century the most famous argument that language is an indinct comes from Noam

Chomsky.

In the 1950s the socid sciences were dominated by behaviourism, the school of thought
popularised by John Watson and B. F. Skinner. Mental terms like “know” and “think” were
thought to be unscientific, and language was thought to be explained by afew smple laws of

gimulus-response learning.

Chomsky disagreed and argued his point using two fundamenta facts about language. Firs,
most sentences a person utters or understands are brand-new combinations of words
appearing for the firg time ever. Hence a language cannot smply be a list of responses to
gimulus. The bran must have a method of building an infinite set of sentences from afinite
set of words. This method of producing sentences could be said to be a mental grammar.

For example:

The man clutched a his umbrella and looked anxioudy & hiswaich, and then

outsdeat the darkening sky.

The above sentence is probably unfamiliar to you, it is likely you have never heard or reed it
before; however you are able to understand the sentence. If | asked the question Who, or
what do you think the man dutching the umbrdla is waiting for? (Ancther unfamiliar
sentence, probably never written before) You could undoubtedly reply with a sensble

response even though you had never seen these sentences before.

The second fundamentd fact Chomsky argues is that children develop these complex
grammars rgpidy and without forma indruction, and grow up to give condgent
interpretations to new sentence congtructions that they have never seen before. Chomsky
argued then, that children must innately be equipped with a plan common to dl languages, a
Universd Grammar. Chomsky is ultimatey aming to modd this universa grammar in his

theories.

Syntactic Structures

The Concept Of Structure

It isimpossible to give a definition of syntactic structure without first condtructing a theory of
gyntax. Many linguists have atempted to show tha there is order in the way language

Speakers create sentences.

Chomsky has had a great influence on the theories about the role of syntax in sentence
underganding. Chomsky’s theories are intended to formdise the rules which conditute
linguistic competence, that is the knowledge that enables language speskers to identify

certain sequences of words as grammatica and others as ungrammatical. For example, what

16

makes a reader look a these two sequences of words differently, one is seen as
grammdicd, and one is seen as ungrammeticd.
Colourless green ideas deep furioudy.

* |deas green furioudy colourless deep.

One important point Chomsky made isthat it isimpossble to lig al the sentences that could

possibly be spoken in a particular language.

Before Chomsky started his work, psychologists had mainly concentrated on the processing
of sngle words, Smply because they had no method of representing larger structures like
sentences and texts. Chomsky’ s demondration that people are able to identify grammeatical
or ungrammatica sequences of words was interpreted as supporting evidence that human

language includes the parsing of sentences into grammatica categories.

Chomsky’s theories are particularly suited to modelling on computers because they are

based on discrete mathematics, and hence are easy to implement as computer programs.

Generative Grammar

Chomsky’s theory of grammar takes the form of rules for generating sentences. His use of
the term generative has sometimes caused confusion, and some people hold the mistaken
view that Chomsky is claming that these are the actud rules that language speskers follow
to produce sentences. A smple example of the rules in Chomsky's (1957) grammar is

shown in the table on the following page.

17

1 S(sentence) ® NP (noun phrase) + VP (verb phrase)
2 NP ® N (noun)

3 NP ® aticle+N

4 NP ® adjective+N

5 NP ® pronoun

6 VP ® V(verb)+NP

7 VP ® V +adjective

8 N ® Jane, boy, girl, apples

9 \% ® likes, hit, was hit, was, are cooking, are
10 adjective ® good, unfortunate, cooking

11 aticle ® athe

12 pronoun ® he, she, they

These rules are dso known as rewrite rules because they can be used to rewrite a sentence
into it's component parts. Rule 1 gtates that the symbol for sentence S can be rewritten into
symbols standing for noun phrase (NP) and verb phrase (VP). This can be interpreted as
saying that English sentences consist of a noun phrase, and a verb phrase. Rules 2 - 5 say
that a noun phrase can be rewritten as any of the following: a single noun, an article followed
by a noun, an adjective followed by a noun, or a single pronoun. Rules 6 and 7 show that a
verb phrase can be rewritten as: a verb followed by an noun phrase, or a verb followed by
an adjective. Rules 8 - 12 dlow the symbols to be rewritten as words. These rewrite rules

can be used to produce syntactic trees which define the syntactic structure of sentences.

An example of how the rules can be used to generate a syntactic tree structure for a

particular sentence is shown in figure 3 below.

S

A
NP VP

T

N article N

Jane hit the boy

Figure 3 -- A syntactictreestructure

Syntactic tree structures show which of the rules have been used to generate a sentence.
The rules are applied, and re applied, until al the symbols, eg. NP, VP, N, V are rewritten
as actud words. The syntactic tree for the phrase Jane hit the boy was generated using the

rules1, 2, 6, 3, 8, 9, 11, 8.

Syntactic trees are extremely ussful when dedling with syntacticaly ambiguous structures.
Syntactic trees can be used to specify different syntactic structures for sentences that are

gyntecticaly ambiguous.

The sentence They are cooking gpples can be analysed in two different ways, one refers to
a particular type of apple (cooking apples), and the other sentence refers to the fact that
some people are cooking some apples. Figure 4 on the following page shows the two

distinct syntactic trees for this syntacticaly ambiguous sentence.

19

/\ /\
NP w NP P
;) / .
ajedive N N
Trey ae kg gpes Tryy aeaxkiry ayles

Figure4 -- Syntactic ambiguity

Phrase structure can aso be represented in box diagrams as in Figure 5 below:

NOUN PHRASE
Article Noun Prepositional Phrase
Preposition Noun Phrase
Article Noun
the people in the room

Figure5 --Phrase structure box diagram

Embedding

It is interedting to note that often grammar rules will dlow the embedding of one rule within
another. This means for instance that a noun phrase might consst of an article, anoun and a

prepostiona phrase. A prepoditiond phrase congsts of a preposition, and may itsdf contain

a noun phrase. It is therefore possble to build an infinitdy long NP as well as an infinite

number of distinct NPs.

Transformational Rules

Chomsky (1957) proposed that the smplest way to generate more complex sentences like
passves is to use trandformationd rules for rearranging the order of words in a sentence.
For example an active sentence like Jane hit the boy would be generated directly by
rewriting rules to generate the syntectic tree as show in Figure 3. This tree would then be
transformed by reordering the words in order to produce the passive The boy was hit by

Jane. The syntactic treeis shown in the figure 6 below.

S
//\
NP VP
article N V(passive) NP
passive N
preposition
The boy was hit by Jane

Figure6 -- Activeto passivetransformation tree

A passve transformation rule might state that, when a sentence is transformed, the passive
form of the verb (vas hit) and the prepostion by should be sdlected to produce the

transformed sentence (The boy was hit by Jane).

21

Chomsky’s trandformational rules are given as operaions on a tree structure. | will show
below how a rule would be created usng an example of particle movement. Consder the
following sentences:

Shewill stand up her date.

Shewill stand her date up.

Particle Movement

D X - Veb - Paticde - NP - Y
1 2 3 4 5
SC. 1 2 0 4+3 5

A formd transformationd rule conssts of an input: a structural description (SD), which isan
ingtruction to analyse a phrase marker into a sequence of condtituents (in this case a verb
followed by a particle followed by a noun phrase). The X and Y variables indicate that
anything preceding the verb and anything coming after the noun phrase are irrdevant to this
transformation. In order for a transformation to be applied the andyss of a phrase marker
must satisfy the SD of the particular transformation. Figure 7 on the following page shows
how this sructure tree can be andysed in a way that matches the SD of the particle

movement transformetion.

The second part of the transformationd rule is the output or structurd change (SC), whichin
the case of particle movement is an indruction to modify the SD by shifting term 3 (the
particle) immediatdy to the right of term 4 (NP). The ‘+ dgn indicates that these two
condtituents are to be attached under the same node (VP). The symbal ‘0" indicates that

nothing remains in the dot where the particle had been.

NP

Aux

NP

She

Figure7 -- Transformational Tree (Particle M ovement)

23

Auxiliary Verbs
Auxiliary Verbsin English indude the fallowing forms

a) Formsof the verb be (is, am, are, was, were)

b) Forms of the verb have (have, has, had)

¢) Formsof the verb do (do, does, did)

The verbs can, could, will, would, shall, should, may, might, must, and a few other
moda verbs. Verbs that are included in this group are cdled modd auxiliaries. Modds are

“helping verbs’ that usudly refer to concepts such as possibility, necessity, and obligation.

Throughout this section | will use the sandard method of showing ungrammatica sentences,

an asterisk(*).

The difference between auxiliary verbs and man verbs is clear in severa grammatica
processes in English, among which are the following:

1. Auxiliary verbs, are fronted in forming questions, main verbs are not.

a) Johnisrunning. Is John running?

b) They have left. Havethey l€eft?

c) | candng. Canl ang?

d) Mary speaks French. * Speaks Mary French?

24

When a sentence doesn't contain an auxiliary verb but only has a main verb, the auxiliary

verb do is used to form questions.

a) You know those women. Do you know those women?
b) May left early. Did Mary leave eaxly?
¢) They went to Phoenix. Did they go to Phoenix?

2. The contracted negative form n't can be atached to auxiliary verbs.

a) Johnisrunning. Johnisn't running.
b) They have left. They haven't |eft.

c) | candng. | can't 9ng.

Main verbs cannot be negated in this way, ingtead the auxiliary verb do is used to form the

negative.

a) You know thosewomen. *You known'’t those women.
b) May left early. *Mary leftn't early.
¢) You know thoseswomen. You don’t know those women.

d) May left early. Mary didn’t leave early.

Auxiliary verbs may dso be followed by the uncontracted form of the negative not. Man

verbs cannot be followed by the uncontracted negative not, in current spoken internationa

25

English: when it is usad in sentences such as “They know not what they do” and “Ask not
what your country can do for you” it is used in stylised versons of English, in which an
archaic flavour has been preserved (as might be seen in religious preaching, or forma public

speaking).

3. Auxiliary verbs can gppear in tags, but main verbs cannot. A tag occurs a the end of a
sentence and contains a repetition of the Auxiliary verb found earlier in the sentence.
Tags are usudly used to add emphags, or to request confirmation of the information

given in the preceding sentence.

a) Herman isthreatening to leave, is hel

b) Herman isthreatening to leave, isn't he?

If the auxiliary verb of the main sentence is pogtive in it’s podtive form, the auxiliary verb in
the tag may be ether in pogtive or negative form. If the auxiliary verb in the main sentence is
init's negative form, then the auxiliary verb in the tag will dways be in the pogtive form:

a) Hermanisn't threatening to leave, is he?

b) *Herman isn't threatening to leave, isn't he?
Where a sentence contains no auxiliary verb, and only has a main verb, it is possible to tag

the sentence by using the auxiliary verb do.

a) *You know those women, know you?

b) Y ou know those women, do you!

26

¢) You know those women, don’t you?

What happens if there is more than one auxiliary verb in a sentence?

a) Johnwill have l€ft.
b) *Have John will left?
c) Gaen has been sudying very hard.

d) *Been Gaen has sudying very hard?

From these examples it looks as if the auxiliary verb that fronts to form the question should

be the first auxiliary verb reached; forming sentences like:

a) Will John have eft?

b) Has Gden been studying very hard?

It is however not as smple as this. Conddering the following examplesit is clear that it is not

aways the firgt auxiliary verb that fronts, in fact the verb that fronts doesn't correspond to

any number.

27

The auxiliary verb used to front the sentence could be the firgt, second, third, forth or indeed

any number.

a) The people who are standing in the room will leave soon.
b) *Are the people who standing in the room will leave soon?
¢) The people who were saying that John is Sck will leave soon.
d) *Were the people saying that John is sick will leave soon?
€) *Isthe people who were saying that John sick will leave soon?
f) The people who were saying that Pat hastold Mary to make Terry stop trying to
persuade Dave that mathematicians are thought to be odd will leave soon.
g *Are the people who were saying that Pat has told Mary to make Terry stop
trying to persuade Dave that mathematicians thought to be odd will leave soon.
In each case the auxiliary verb will is the correct verb to use to front the sentence.
The auxiliary verb that should be moved to produce the question is the auxiliary verb that
immediatdy follows an intuitively natural grouping of words referred to as the subject of the

sentence.

28

The subject in the following sentencesis underlined:

a) John will have left.

b) The people who are standing in the roomwill leave soon.

¢) The people who were saying that Pat has told Mary to make Terry stop trying to

persuade Dave that mathematicians are thought to be odd will leave soon.

d) Yesterday, John could lift five hundred pounds.

€) Around thistimelast year | wasill.

The last two sentences suggest that the gppropriate auxiliary verb of the sentence should be

placed immediately to the left of the subject, and not merely a the beginning of the sentence.

We now have arule for trandating a declarative sentence into a questioning sentence:

locate the firgt auxiliary verb that follows the subject of the sentence and place it
immediady to theleft of the subject.

Finding the Subject of a declarative sentence

Subjects not only play a role in trandformation rules, they play an important part in other
grammatica processes. It is unfortunate then, that the notion of a subject has never been
precisgly defined, despite its Sgnificant role in linguidtic andyss. Finding the subject of a

sentence is generdly left to intuition, something thet is very hard to give a computer program.

29

The classic example of a subject comes from smple sentences with action verbs such as the
farmer fed the piglet, in which the subject, in this case the farmer, is understood as the
agent (“the doer”) of the action, and the object, in this case the piglet, is understood as that
which undergoes the action. Not every subject is an agent; in the sentence Mary resembles
her Aunt Bettina, Mary is the subject, but no action is involved. Trying to characterise

subject in terms of meaning is avery difficult and complex task, if it ispossble at dl.

Testsfor finding the subject

Seeing as we cannot say for definite if any sequence of words is the subject of a sentence
or not we will have to rey on afew tests that will tell usif a sequence of words is the likely

subject of a sentence.

a) The subject of a declarative sentence generaly precedes the auxiliary and main
verb in linear order.

b) It forms the congtituent around which an auxiliary is fronted in forming a question.

c) It is the condituent with which a pronoun in a tag agrees in terms of person,
number and gender.

Using these test we can be fairly certain that we have the subject of a sentence.

Grammatical Relations
In English the subject of a sentence can structurdly be defined as the particular NP in the
gructurd configuration immediately dominated by S and preceding Aux VP as shown in the

figure 8 below:

(Subject)—» NP Aux VP

N

Vv NP <—— (Object)

Figure 8 -- Structural definition of subject and object

The object of a man veb can be dructurdly defined as the NP in the sructurd

configuration that isimmediatdy dominated by VP.

X-bar Theory

The phrase dructure of a sentence is a hierarchy, with each condtituent successively
conggting of other condtituents, until only non-expandable items are left . The ‘congds of’
relationship can be expressed as re-write rules (A ® B C). An item that comes above

another item in the tree and is not on a separate branch is said to dominate it.

With Principles & Parameters theory phrase dructure is a comparatively smple system

derived from a few principles and the setting of certain parameters. X-bar syntax replaces

31

large numbers of individua re-write rules with generd principles; it captures properties of dl

phrases, not just those of a certain type; it bases syntax on lexica categories.

X-bar clams every phrase conforms to certain requirements. Particularly that phrases must
be endocentric, that is a phrase dways contains at least a head as well as other possble
condtituents. For example aNP such asthe bird hasahead bird; a VP sees the cat has a
head sees. The essentids of X-bar syntax is that the head of the phrases belong to a
particular lexicd category related to the type of phrase. Consder the re-write rules below
NP® N

VP® V

X-bar can replace these two re-write rules with one:

XP® X

In X-bar there are four lexical phrases.

VP (verb phrase)
NP (nhoun phrase)
AP (Adjective phrase)

PP (prepositiona phrase)

X-bar clams the phrase levd, i.e. XP where X stands for any of the categories are not

aufficient to capture al the detalls of the phrase structure: an intermediate leve is needed.

Condder the following sentence:

32

The education minister will resgn her post on Tueday.

The VP of this sentence will require atree as shown in figure 9:

VP
\Y NP PP
resign her post on tueday

Figure 9 --Three branched verb phrase

This atypicaly requires three branches rather than the more usud two. This tree fails to
digtinguish the reationship between V and the NP, and the relaionship between V and the
PP. It would be convenient if the structure of the VP distinguished optiond eements from
those that are compulsory. Defining the compulsory dements as V' gives the tree shown in

figure 10 on the following page.

VAN

resign her post

Figure 10 --X-bar verb phrase
The VP now has leves of structure and the PP can now be detached from the head V. The

close relationship between V and object NP can be expressed through sisterhood in the V'
phrase. X-bar alows dl other phrases to be solved in the same way; they dl have an

intermediate leved.

g theory (Theta theory)

Theta theory is concerned with who is doing what to whom (theta roles or thematic
roles).These form a crucid part of the syntactic meaning of the sentence. A sentence such

as

Alfagave Al acompact-disc

has three thematic roles: Alfa refers to the person who is carrying out the action (the Agent

role), the compact-disc to the object affected by it(the Petient), Al to the person who

recaivesit (the God).

Government Binding

Government binding has been continuoudy developed and refined, through repeatedly
goplying it to awide range of naturd languages. The languages have ranged from languages
traditiondly associated with naturd language processing, such as English and French, to less
traditiond languages, like German, Portuguese, Japanese, and even less wel known
languages such as Warlpiri (a free-word-order language of Audraia). Through applying
government binding to such a wide range of languages, it has been possble to move from
the view of grammar as a s&t of rules towards the view that grammar is a st of interacting
well-formedness principles, and parameters. This view came from the redisation that
languages are very different at surface leve, and require very different sets of rules for their
respective grammars. These different grammars, are generated from common principles, and
a few language dependant parameters. Government binding concentrates on these common
principles. The use of government binding enables the capture of the atributes of dl
languages, in an degant, and concise manner. It adso provides a greater explanatory depth

than is possible with rule based phrase structure grammar.

Deep Structure

Later versons of Chomsky’s theory (1965) state the idea that each sentence has a surface
structure and a deep structure. The surface structure is represented by the actud order of
the words in a sentence. The deep structure represents the basic grammatica relationships
from which the surface structure is derived. For example, the deep structure Jane hit the

boy can be used to derive the surface structure The boy was hit by Jane.

Chomsky’s theory dso suggests that deep structures contain dl the syntactic information
necessary for interpreting the meanings of sentences, however, surface dructures are

necessary for representing the words of a sentence in the correct order.

A complete Chomskian grammar must specify trandformationd rules for mapping surface

structures onto deep structures and deep structures onto surfaces structures.

The figure below shows the relationship between deep structures and surface structures in

Chomsky’ s theory.

SYNTAX COMPONENT

Surface structures PHONOLOGICAL COMPONENT

Transformational
rules Phonological rules

SEMANTICS COMPONENT

Deep structures

Lexicon

Rewrite rules

Figure 11 --Chomsky’s (1965) theory of language

Lexicon
A lexicon is essentid for the understanding of alanguage. A lexicon will list dl thewordsin a

language, each with its form, its meaning, and its lexica category (i.e. article, noun, verb,
prepogition, etc.). According to Miller and Gildea (1987, 94) Humans will have built a
lexicon of gpproximately 80,000 words by the time they are 17. It is naturd to think of
individua words as the building blocks of sentences. In the standard theory (as summarised
in Chomsky 1971) sentence generation begins from a context-free grammar generating a
sentence structure and is followed by a selection of words for the structure from the lexicon.
The context-free grammar and lexicon are

said to be the base of grammar.

Meaning properties

At the very minimum a lexicon must specify the meaningful words of the language, and must
represent the meaning of these words (both smple and complex) in some way. For example
an English lexicon must tdll us that procrastinate means to defer action, bachelor means

unmarried adult mae, mother means femae parent, and so on for al the words in the

English languege.

L exical ambiguity
The following are examples of lexical ambiguity:
a) Hefound abat.
(bat: bat and bal; flying rodent)
b) She couldn’t bear children.

(bear: give birth to; put up with)

37

The itdicised word in each of the above sentences is ambiguous because it has more than
one meaning. The ability to detect ambiguity is crucid to language undersanding and
communicating the correct meaning depends on the speeker and the listener recognising the

same meaning for a potentidly ambiguous word.

The mgor difficulty in modeling the human lexicon is how to define the meaning of words.

There are three main methods, of modeling meaning in alexicon, in use today.

The Encyclopaedic view

In this method the meaning would contain a complete encyclopaedic entry. This means a

complete ligt of dl possble meanings would be attached to each word. For example the

word cat might have its meaning defined as

cat: cute, fluffy, animdl, pet, ... &c.

A lexicon in a gpecidised domain of zoo keeping might define cat as

cat : big, deadly, stedthy, swift, man-eater,....etc.

The meaning of words obvioudy depends on the domain.

The Componential view
The componentid view would only contain a few key words related to the word being

described. For example the word student might be described with the key words

sudent: human, in education.

The advantage of this method is that the meaning should not change depending on the
domain; however, there are difficulties with this gpproach. It is hard to find words that will
exactly define the meaning of a word, another difficulty arises because each word used to

describe aword mugt itsdlf be described and this will use alot of resources.

The Nominal view
The nomind view of a lexicon contains no meaning , jus the lexicd category and amilar

information of each word.

39

Parsing Issues and techniques

Parang isthe term used to talk about syntactic analyss. The word parsing is derived from
the Latin phrase pars orationis (part of speech) and refersto the process of assigning a part
of speech (Noun. Pronoun, Adjective, and so on) to each word in a sentence, and grouping

words into phrases. A parser will output an andlyss of the structure of the text it is given.

There are many theories on parsing, one way of displaying the results of a syntactic anadyss

iswith aparsetree. A smple example is shown below.

Sentence to parse : The man likes pizza

S
’/\
Noun Verb Noun phrase
The man likes pizza

Figurel2 -- A parsetree

A Parsetreeis atree in which interior nodes represent phrases, links represent applications

of grammatica rules, and leaf nodes represent words.

The best way to understand how a parser works is to trace the parsng of a sentence

generated by a ample grammar (see the section of Generative Grammar).

S® NPVP A sentence can consist of anoun phrase and averb phrase.

NP® (det) N (PP) A noun phrase can consist of an optional determiner, anoun, and an
option prepositional phrase.

VP® V NP (PP) A verb phrase can consist of averb, anoun phrase, and an optional
prepositional phrase.

PP® PNP A prepositional phrase can consist of apreposition and a noun phrase.

N ® man, boy, dog, pizza... The nounsin the dictionary include man, boy...

V® eats, likes, bites... Theverbsin the dictionary include eats, likes...

P® with, in, near The prepositionsin the dictionary include with, in, near.

Det® a, the, one The determinersinclude a, the, one.

We will use the same example sentence as before, and will show how the parse tree can be

generated.

“The man likes pizza”

Moving from left to right, the firs word we come across is the. The parser checks the

dictionary, and discovers what category of word it belongs to, that is determiners. This

could be seen, as checking the right-hand side of the rules, and discovering the category in

Det

The

Figure 13 -- A parsetree (determiner)

the left-hand side. Now we can start to generate the parse tree.

41

Determiners, as al words, have to be part of some larger phrase. The parser can ascertain
which phrase, by checking which rule has Det on it's right-hand dde. The parser will
discover that the only rule with Det on it's right-hand sde is that for a noun phrase;

therefore, more of the parse tree can be generated. This sub-tree must be held in memory.

Figure 14 -- A parsetree (houn phrase)

The parser must also remember the current word, the, is part of a noun phrase. The noun

phrase must be completed by filling in the rest of the words in the noun phrase sub-tree.

Following the smple grammar specified earlier means this noun phrase must contain &t least
a noun, and could possbly have a prepostiond phrase. While we are waiting for an
opportunity to fill in the rest of the noun phrase the parse tree can continue to grow. Just as
every word must belong to alarger phrase each noun phrase must aso belong to some other
dructure. After the parser has checked the right hand side of the grammar rules, we find that
a noun phrase has a few structures that it could belong to: a sentence, a verb phrase, or a
prepositiona phrase. In this case, we can decide, by using a root down approach. As al

words, and phrases must eventualy be part of a sentence, and a sentence must begin with a

noun phrase.

4?2

//\
NP VP
Det Noun

The

Figure 15 -- A parsetree (pre-empted verb phrase)
It islogica to expand the parse tree using the sentence rule. The tree expands like this. It is

worth noting that the parser is now holding two incomplete branches of the parse tree in
memory. The noun phrase, which iswaiting for a noun, in order to be completed.. The other
branch held in memory is the sentence its saif, which needs a verb phrase to complete it. We
can now go back to the sentence, “The man likes pizza.” and check the second word
“man” againg the grammar rules. Man is part of the N rule, an so we can integrate man into

the parse tree, completing the noun phrase.

S
/\
NP VP
Det Noun
The man

Figure 16 -- A parsetree (sentence)
The parser now no longer needs to remember that there is a noun phrase to be completed;

al it need ded with is the incomplete sentence. The next word we get is likes, which we find
to be a verb by looking at the grammar rules. A verb, as defined in our smple grammar isa
part of a verb phrase, and cannot originate from anywhere else. The branch for the verb
phrase has dready been generated, so the verb, and the verb phrase nodes can smply be

linked together. The verb phrase contains more than

S
_/—\
Noun Verb Noun Phrase
The man likes

Figure 17 -- A parsetree (incomplete noun phrase)

just a verb it aso has an object, in the form of a noun phrase. The parser pre-empts the

need for the noun phrase, and so expands the parse tree automatically.

We are now expecting a noun phrase, in order to complete the verb phrase. The next word
we get is pizza, which is a noun. The word pizza has completed the noun phrase, the noun
phrase completed the verb phrase, which in turn completed the sentence. So now we have

the parse-tree that we originaly started with in Figure 12.

The parsng method we have just stepped through is using a bottom-up method. In a
bottom-up parse, the parang darts with the individud words, and attempts to build
upwards. As we have seen, it takes a word, and finds the rule that fits. Another method of
parang uses the top-down method. In the top-down method, the parser starts a the
abstract level of the sentence, and attempts to generate the structure of the tree, by working
down to the words themselves. A top-down parse would start with node S, which by
referencing the grammar rules, the parser knows must consst of a noun phrase, and a verb
phrase. Again through referencing the grammar the parser knows a noun phrase must consist
of apossble determinant, a noun, and a possible prepostiona phrase. The parser will work
its way down like this until a syntecticaly correct parsng has been achieved, or dternatively

the sentence has been found not to be syntacticaly correct.

The choice of method, ether top-down or bottom-up becomes important in complex
grammars where the is a lot of scope for recurson. If we add more rules to the smple
grammar we started with, we will be able to see how it affects the effectiveness of each of

the two methods.

#S® NPVPPP
S® NPVP
#NP® detn
#NP® det adj n

#NP® det n PP
#NP® adj nPP

#NP® Pron
#VP® V NP
PP® PNP

N ® man, boy, dog, pizza...
V® eats, likes, bites...
#adj ® dlimy, nasty, tasty..
#Pron® I, he, she, it....
P® with, in, near

Det® a, the, one

A sentence can consist of anoun phrase and averb phrase.

A noun phrase may consist of adeterminant, and a noun.

A noun phrase may consist of a determinant, an adjective, and a
noun

A noun phrase may consist of a determinant, anoun, and a
prepositional phrase.

A noun phrase may consist of an adjective, anoun, and a
prepositional phrase.

A noun phrase may consist of asingle pronoun.

A verb phrase can consist of averb and a noun phrase.

A prepositional phrase can consist of apreposition and anoun
phrase.

The nounsin the dictionary include man, boy...

Theverbsin the dictionary include eats, likes...

The adjectivesin the dictionary include slimy, nasty, tasty....
The Pronounsin the dictionary includel, he, she, it....

The prepositionsin the dictionary include with, in, near.

The determinersinclude a, the, one.

Indicates anew rule, or amodified rule.

Note that where in the previous grammar there was one definition of a sentence, there is

now two, and where there was only one definition of a noun phrase there are now five.

It is easy to see that when parsang with the top down method, there is immediately a choice
between the two types of sentence. Y ou have a 50/50 chance of getting it wrong before you
even dart processing! Each of the sentence types start with a noun phrase, of which there

are now five types. You now have ten ways the sentence can be analysed, before you have

even looked up anything in the word ligs.

Backtracking

Backtracking is the term used when a parser has to revise decisons that it has previoudy

made. It is easy to see the need for backtracking. When using a top-down method, as

dated before, even with fairly smple grammars you will have a chance of getting it wrong

before you even start. Backtracking is equaly important when using the bottom-up method,

to show this, consgder a sentence thet is structurdly ambiguous. Structurd ambiguity means

that according to the rules of grammar, the sentence can be interpreted two or more

different ways. Congder the following sentence:

He pointed at the girl with the stick.

In one case the NP consists of just the girl,

ie NP® detn

and the VP is pointed at the girl.

i.,e. VP® v NP

The parser concludes that the PP is part of a sentence of the type NP VP PP

i.e.S® NPVPPP

a7

In the other case the PP is taken to be part of the NP (the girl with the stick).

i.,e. VP® v NP

NP ® detnPP

The parser concludes it isa sentence of type NPVP

i.e.S® NPVP

If the rules are taken in order the first sentence identified will be the NP VP PP type. To get
both possible sentence structures the parser will have to backtrack to the point where the

rule,

NP® detn

was gpplied, and test if any other rules might be gpplicable.

Depth-first

There are two ways of making sure you have dl the possible sentence structures. Namely to
perform ether a depth-first search or a breadth-first search usng the grammar rules as the
search space. Depth-firgt, where each sentence structure is followed until it is found to be a
syntacticaly correct sentence or is proved to be afdse trail. The parser will then return to

the last choice it made, and condgder dl the dternaives, until every possble sentence

sructure has been tried. Obvioudy parse paths that result in syntacticaly correct sentences
must be remembered and retrieved at the end. The problem here is that it could prove dow

to find dl the possible sentence structures.

Breadth-first

Breadth-first parsang explores al possble sentence structures in parald, so that both true
and fase trals are kept dive until the last moment. Obvioudly if thisis done, thereis no need
to ‘backtrack’. This method is more memory hungry, as each path through the grammar
must be hed in memory at the same time, until either the path has been proved fdse, or dl

possible sentence structures have been found.

Charts

Chart parsers are one way in which to minimise the amount of re-analysing that must be
done when backtracking. Using the example sentences below, we are able to see that they

have very different parses.

Have the students in year four of Computer Science take the exam.

Have the students in year four of Computer Science taken the exam?

If the parser isto be efficient, it must avoid reandysing
“the studentsin year four of computer science’ , as a noun phrase each time it backtracks.
Once we discover that “the students in year four of computer science” isanoun phrase, it is

possible to store and record that deta in a chart. Because we are dedling with context free

49

grammars, any phrase that was found in the context of one branch of the search space, is
equaly vdid in another branch. A deeper discusson of the use of charts in naturd language

processing is given in “An Introduction to Machine Trandation” (Hutchins & Somers)

Implementation
Choosing a Programming Language

There are two basic types of programming language.

Imperative.
Tdl the computer how to achieve agod, by giving a sequence of ingtructions.
Examples. FORTRAN, Pascal, BASIC, COBOL.
Although NLP is possble usng Imperative languages it lends itsdf more to declarative
languages designed with symbol manipulaion in mind.
Declarative.
Tdll the computer what god to achieve, by giving a specification.

Examples. Prolog, OBJ3, Lisp.

Prolog and Lisp are not entirely declarative - they have imperative fegtures too,
eg. for

input and output.

The firg and most fundamenta Idea in Al programming languages was the use of the
computer to manipulate arbitrary symbols, symbols that could stand for anything, not just
numbers. List processing techniques came as a product of symbol manipulation and were

firgt introduced in the IPL language.

51

IPL was created by Newell, Shaw and Simon (1957). Its design was guided by ideas from
psychology, especidly the intuitive notion of associaion. The primary dements of this
language were symbols as opposed to numbers. To enable association to be made between
these symbols lig processng was introduced, which dlowed programs to build data
sructures of unpredictable Sze and shape (when parsing a sentence it is impossible to know
ahead of time what form the data structure will take.). Another festure introduced in IPL is
the generator, a procedure for computing a series of vaues. It produces one value each
time it is cdled and then is suspended so that it garts from where it left off last time it was

caled. The SAD-SAM program (see background section) was writtenin IPL.

The language used in the implementation section of this project should, idedly have the

following properties:

- Be avaladle in the Universty (and preferdbly available in some form for my home
computer)

- Be wdll documented

- Haveligt processing techniques

- Contain ample pattern matching facilities

- Contain facilities to build complex knowledge structures

- Allow the programmer to split the problem solution into sub-sections.

LISP

52

LISP is the Second oldest programming language that is currently in widespread use
(FORTRAN in the oldest). LISP, released by John McCarthy in 1958 incorporates the idea

of list processng and some nove ideas about programming.

LISP is the primary Al programming language: it is used by the vas mgority of Al
researchers in dl sub-fidds, and has this pogtion partly for historicd reasons. It was
established early in Al history, severd large systems have been developed to support
programming in the language, and dl students in Al laboratories learn it. As a consequence

L1SP has become a shared language with which most Al researchers are familiar.

Beddes LISP's use of ligs dructures as its only data type, it is different from other
programming languages. Indead of describing computations as sequences of steps

(ingtructions) LISP programs condst of functions defined in a very mathematica way ..

LISP has developed alot sinceits early days. Current LISP programming environments are
themsalves very large LISP programs. Two of the most highly developed LISP systems are

MACLISP from M.I.T. and INTERLISP from B.B.N and Xerox.

INTERLISP hasthe following features

1. A uniform error handling system, which dlows some kinds of automatic error
correction such as spelling correction, entry to a specid flexible debugging facility
and handling of particular error conditions by user functions.

2. CLISP, which isan dternative, extendble, expresson syntax.

3. Programmer’s Assigtant, which keeps track of the user’s commands and aso
alows salected commands to be undone, re-tried or changed and re-tried.

4. Masterscope, which is a cross referencing facility to create a modd of a user’s
program, that can be used to help manage alarge system.

5. File package, which offers assstance such as storing functions that have been

dtered during a debugging sesson on a permanent file.

LISP can be used to produce some complex systems, Winograd's SHRDLU (see

background section) was programmed in LISP.

There is alot of information avallable aout LI1SP, and implementations of it can be found

both at the University and at the FTP Sites of other Universties and commercia companies.

Prolog

Prolog is the most widdly used logic programming language. It is used primarily in producing
rgpid-prototypes and for symbol manipulation tasks, such as writing compilers and parsng

natural language It has also been used to produce expert systems.

Prolog is an expressve language for sating dgorithms in computationd linguigtics. In NLP,
we are frequently interested in manipulating symbols (words, partid phrases and other parts
of gpeech) and structured objects (strings, sequences, trees, graphs) made from them.
Prolog isahigh level language that can directly express operations on symbols (represented
by atoms, strings, numbers for instance) and structures (represented by ligts or terms, for
instance) without having to worry about how these high-level concepts are actudly
represented in the machine. Prolog dlows us to tak about information a a very abstract
levd in terms of facts, and to express arbitrarily complex retrieva operations (‘inferences)
involving it. The concept of recurson plays afundamenta role in NLP. Linguigtic objects are
described by recursive data structures and operations on these data structures are naturaly
expressed as recursve dgorithms. In common with other high-level programming languages
Prolog places no redrictions on predicae definitions caling themsdves (directly or
indirectly), and so can express such dgorithms directly.

| chose to program in Prolog, because it was designed for exactly for the type of processing

of symbolic structures that NLP requires. It has aso been proven, and is widely used in

parsng natura language.

How Prolog works

Prolog is not a general-purpose theorem prover, and its powers of inference are limited. For

example, it cannot answer these questions:

X >1, X =<2, integer(X).
25is X2 + Y2, integer(X), integer(Y).

It cannot solve these questions because it can only prove something if it has some rule to
compare with.

Prolog works by backward-chaining, usng Modus Ponens.

If I am asked to prove Q

and | havetherule (Pimplies Q)

then if | can prove P, | can prove Q
othewise | shdl assume Q isfdse

Note that if Prolog can't prove a god, it assumes it to be fase. This is cdled the closed

world assumption.

Clauses

Prolog programs are written as a sequence of clauses. Each has the form

predicate(argument, argument, ...).
or
predicate(argument, argument, ...) -

predicate(argument, argument, ...),
predicate(argument, argument, ...).

, means “and".
- means " if".

All dauses are Horn clauses: one god, implied by a conjunction of other gods (possibly

none).

Prolog aways executes the tail of a clause from left to right, asin conventiond programming

languages.

The effect of clause ordering
Because Prolog searches for clauses from top to bottom, the order in which they are written
makes a difference. If a predicate has severa solutions, their order of appearance is

determined by the order of the clauses.

If the conditions in dternative clauses are not mutudly exclusive, then backtracking will

produce them both

57

Program components

Predicate names start with alower-case letter. Example: is _a, diff.

The arguments to predicates can be any term:

Atoms.

Arbitrary names, used as logica congtants. They must sart with a lower case

letter.

Example: x, identity 1.

Numbers.

Integers or floating-point numbers.

Example: 2, -25.39.

Variables.

Arbitrary names used aslogicd variables. They must start with a capita |etter.

Example: X, N_plus 1.

Structures.

A functor.

Example: vec3(0,1,0), mat2(vec2(1,0), vec2(0,1)).

Ligs.

Sequences. Ligs are actudly atype of structure, but have a specid syntax.

Example: [the, dog, bit, the, cat], [], [[1,0,0], [0,1,0], [0,0,1]]

List processing

member(X, [X[Tail]).

member(X, [Head[Tall]) :-
member(X, Tal).

Read thisas.

X isamember of any lis whose

firs dement is X.

X isamember of any lig if
X isamember of thetall of

thelist.

The head of alig isitsfirs dement.

59

Thetal of aligt isthe sub-list formed by its second, third, nth elements.

Appendingtoalist

append(], L, L).

gppend([HT], L, [H[T1]) -
append(T, L, T1).

Read thisas.

The result of joining the empty list

toLisL.

The result of joining the list whose
head isH and whosetall is T to
L isalist whose head isH and whose
tal isT1if

theresult of joining Tto L isTL.

Uses of lists

Lists can be used to represent sets. They can aso be used to represent trees.

Lists can aso be used effectively to represent sentences.

Operators
In the structure complex(ab), complex is caled the functor. Normaly, structures are written

in prefix notation, with the functor before its arguments.

Prolog dlows us to declare that a given functor can be written between two arguments
(infix), after an argument (podtfix), or before an argument (prefix). Doing this avoids the
need for brackets. Such functors are caled operators. Operators can be given different

precedence and associations.

Some functors, such as +, *, is, and \=, are dready defined as operators by the system. This
iswhy we can write C is A+B ingtead of iS(C,+(A,B)). However, the bracketed form isaso

alowed.

Note: These operators are atoms. As well as sequences of |etters, atoms can be sequences

of “symbol characters’. Examples. +, ++, -->.

The Cut(!)
To avoid writing the negation of a condition, Prolog uses the cut, written as !
The ! can be used to mean “if you get this far, then discard (cut out) any dternative

solutions'.

The Cut(!) can be used to prevent backtracking. If it is placed as a sub-goa. If Prolog

backtracks to the Cut it will fail therule

61

Thetop-level interpreter
All Prolog sysems come with a top-level interpreter. This is a program which reads

questions from the user, and cdls Prolog's inference mechanism to determine thelr truth.

L oop:
Display a'?-' prompt.
Read the next question.
If itistrue,
display the varigble bindings
otherwise
say 'no’
endif.
END Loop.

62

Efficiency Techniques

| found a good guide to writing efficient PROLOG code, Efficient Prolog: a practica guide,
written by Michadl Covington. In this report Covington (1989) Identifies a number of points
for efficient Prolog
(It can be found at ftp://ai.uga.edu/publ/ai.reports/ai198908.ps.Z.):

Think procedurdly aswel as declaratively.

Narrow the search if possible.

Let unification do the work.

Avoid assert and retract.

Understand tokenization.

Avoid gtring processing.

Recognise tail recurson.

Let indexing help.

Work at the beginning of ligts.

Avoid building data structures unless necessary.

Finding a foot hold

Before atempting to implement anything thet | had learned through my project, | reed alot
of materid concerning Prolog, and how to write computer programs in it. A lot of the
materiad | read was hdpful, unfortunatedy some was less hdpful. A problem | frequently
encountered was the quality/abstraction of code examples, there are a lot of very smple
Prolog examples, equdly there are quite a few complex programs available from various

sources, however, | was only able to find afew examples between this range. It would have

been a great benefit and sped my progress up if there were more examples of intermediate

code available to examine.

Another problem | faced was the availability of other people to examine and comment on
my code. My project supervisor was not a Prolog programmer, and so was only able to
give limited advice and guidance. Very few of my colleagues know anything of Prolog, those
that do, were a the time in the process of learning the language. A few had the advantage of
having studied logic programming before, unfortunately | was not able to take this course.
Even given these limitations it was often interesting and helpful to receive feedback from
other people in asmilar dtuation. | dso found it helpful to give feedback on other peoples

code.

First attempts

Having read around the Prolog programming language and experimenting with smal chunks
(typicaly 3 or 4 lines) of code. | decided to implement something related to my project. |
decided to produce a small parser/phrase-tagger based on Chomsky's theories of
generative grammar. It seemed to me, that the grammar rules would map easly to the logical
definitions in Prolog. This program conssted of a amdl lexicon, defined at the top of the
program, followed by the definitions of the grammar rules.

| based my program on a set of grammar rules, or re-write rules smilar to those you have
seen in the theory section of this report. This first program worked quite well, parsng and

tagging short, Smple sentences.

| used this program not only to parse sentences, but | dso experimented, directing my

experiments to the problem of detecting missing words from sentences. For example:

|'?- s([the, X, renenbered,the,girl]). |

Prolog will look for vaues of X that will, when insarted in the place of X will complete the
sentence, agreeing with dl the grammar rules that the program recognises. My program

would first look at the rule defining sentences:

/*
** (X) is a sentence if (A and (B) follow each other AND
*x ((A is a noun phrase AND (B) is a verb phrase)
*/

s(X) :- append(A B, X), np(A), vp(B),
nl,nl,wite('np = "), wite(A),wite(' vp ="'),wite(B),
nl,wite('s = "), wite(X).

This rule sates that a Sructure is a sentence if it can be described in terms of a noun phrase
followed by averb phrase. Because np is the next structure mentioned as part of a sentence,

Prolog will look at the noun phrase rule:

/*
** (X) is a noun phrase if (A) and (B) follow each other AND

*x ((A is a determinant AND (B) is a noun)
*/
np(X) :- append(A B, X), det(A), n(B),

nl,nl,wite('det ="'), wite(A),

wite(" n="),wite(B),

nl,wite('np ="'), wite(X).

In this example X can be seen asanoun
Prolog would then find that two parts of the test sentence match thisrule:

a) [theX] (where X can be any vaue)

b) [thegirl]

Prolog finds the firs noun defined in the lexicon and subdtitutes it for X in the above noun

phrase.

a) [the,boy]

Prolog has now found al the noun phrases in this pass, so it will now look at the verb phrase

rule

/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is averb AND (B) is a noun phrase)
*/
vp(X) :- append(A B, X),Vv(A), np(B),
nl,nl,wite('v=") wite(A,wite('" np ="'"),wite(B),
nl,wite('vp = "), wite(X).

This rule states that a Structure is a verb phrase if it can be described as a verb followed by

anoun phrase.

Prolog would recognise [remembered,thegirl] as a vadid verb phrase. Because the noun
phrase [thegirl] has dready been recognised as such, Prolog would see that the verb
remembered is followed by a noun phrase, and recognise the verb phrase dructure

[remembered,the,girl].

This procedure can be seen in the output over the page.

Prol og-2 V2.35 PDE

Press F1 for help

?- ['c:\prol og\top-down\ gramar. one'].
c:\prol og\top-down\ grammar. one consul ted
?- s([the, X, renenbered,the,girl]).

det = [the] n = [boy]
np = [the, boy]

det = [the] n = [girl]
np = [the,girl]

v = [renenbered] np = [the,girl]
vp = [renenbered, the,girl]

np = [the, boy] vp = [renmenbered,the,girl]
s = [the, boy, renenbered, the, girl]

X = boy

More (y/n)?

Sdecting y will force Prolog to repeat this procedure, to find another vaue of X, until,
eventudly al the possble vadues of X (in this case nouns in the lexicon) have been

exhausted.

Moving on

In the next verson of my program | decided add an extra grammar rule, making the
sentences that it could recognise less redtricted and rigid. | decided that | would add the
grammar rule that would adlow a noun phrase to be built from a single pronoun. This would
mean that more naturdly sounding sentences like “she killed the boy” or “she killed him”
could be recognised. This verson was mainly used as a sepping stone, while | was ill
learning how to extend the range of the parser/phrase-tagger. A few more words were
added, to existing lexica categories in the lexicon, and an additiond lexica category was

created, namely pronouns (he, his, it, its, her, she, hers, etc.).

67

The modd of the grammar was built up incrementdly, testing the new grammar rules as |
added them.

In the next extensgon to my program | had planned to add grammar rules to alow the use of
adjectives. Adjectives are interesting grammatical dements, because of the way they can be
used to created infinitely long structures describing some arbitrary object or concept. The
use of adjectives in this grammar is the firg time | dedlt with recurson. In this extendgon to

the basic program three new grammar rules were added, and an extralexica category.

| handled the recursive properties of adjectiva phrases using the two rules shown below:

/*adj ectival phrase*/

ap(X) :- append(A B, X),adj (A, n(B),

write(' This adjectival phrase is nade up of an adjective and
a noun'),

nl,wite('adj = "'"),wite(X),

wite(' ap = '), wite(X),nl.

ap(X) :- append(A B, X),adj (A, ap(B),
nl,wite(' This adjectival phrase is nade up two or nore
adj ectives and a
noun'),
nl,wite('adj = "), wite(A),wite(' ap = "'),wite(B),
nl,wite('compound ap ='), wite(X),nl.

The noun phrase that uses the adjectivd phrase is shown here:

/*adj ectival noun phrase eg 'the sly quick brown fox' */

np(X) :- append(A, B, X), det (A), ap(B),
nl,wite(' This noun phrase has a determ nant and an adj ecti val
phrase’),

nl,wite('det = "), wite(A),
wite(' ap = '), wite(B),
nl,wite('np ="'"),wite(X),nl.

These new rules, dong with the extra lexicd category alow sentences like “she fed the dy
gorilla’ and more complex sentences like “she fed the dy brown gorilla’ and “she fed the dy

quick brown gorilla’ to be parsed and tagged correctly.

The next extenson | made to my program was the addition of grammar rules to handle
prepositiona phrases. It was when testing this that | ran into a problem. The Prolog

environment warned me that it had run out of workspace.

Prol og-2 V2.35 PDE I nsert
Press F1 for help
?- ['c:\prolog\top-down\grammar.fou']. + Error nenu ---+
c:\prol og\top-down\grammar.fou consulted Abor t
?- s([the,boy,with,the,girl]). (Break)

Exi t
Thi s noun phrase is nmade up froma determ nant and a noun} (Fail)

I
I
1
1
1
|
det = [the] n = [boy] i Help
1
1
1
1
1
1
I
I

np = [the, boy] (coRrect)

Eval uati on aborted (Trace)

?- s([the, boy, killed,the, boy, near, t he, el ephant]).

o e +

Thi s noun phrase is nade up froma determ nant and a noun

(o) B R e +

np =} Error no.173 (no_workseq) '
| Qut of workspace H
| G obal: 200 Local : 41998 H
| i
| I
1 I
| I
| I
I I
| I
| I
I I
| I
1 I
o m o m e e e e e o ee e oo +

Obvioudy this shocked me alittle and | was a aloss of how to remedy the Stuation. | had a

break through, after reading a few books, some on parsing and atificia inteligence, and

69

some on Prolog. At this point | knew the advantages and disadvantages of both top-down
and bottom up parses (see section on parsing issues and techniques), but it wasn't until |
redlised how these two techniques could be applied in Prolog, that | understood why my
program was having problems with the amount resources available to it. | had built a top
down parser, without actudly redisng it! A top-down parser will keep open dl the
branches of possible sentencesiit could find, until it finds one that is grammatically correct or
dternatively dl are ungrammatica. The way a top down parser might be implemented is to

do with the position of the append statement in the grammar rules.

The query:

np(X) :- det(A), n(B), append(A, B, X

might be cadled bottom up because it fird sdects lexicd items and then verifies the

combination. The query :

[np(X) :- append(A, B, X), det (A), n(B) |

could be caled top down because it first sdects the combination, and then, using a lexica

search process, verifiesthat A isadeterminer and B isanoun in the lexicon.

Bottom-Up Parser

After seaing firg hand how Prolog interprets the grammar rules, | decided to continue
implementing the rules as a top-down parser, but o to implement the rules as a bottom-up
parser, and compare the differences between the two methods. From this point forward |
decided define the lexicon separatdly from the grammar rules. This not only means | can use

one lexicon for each of the two methods of parsing, it dso means | need not re-enter the

70

lexicon code each time | start a new revison. Perhaps more importantly it means a more
sophisticated lexicon could be implemented and used with these parsers. Very rarely do |

get errors about running out of workspace when using the bottom-up parser.

Although | have noticed some other problems concerning this code. Due to the recursive
properties of the grammar, the parser seems to be moving through the search space of the
gramma and producing some interesting, if annoying results. The parser produces
sentences, that whilst syntacticdly correct are difficult to comprehend, and can seemingly go

on forever! For example, consder the following extract from some of the parser output:

This prepositional phraseis made up of a preposition and a noun phrase
prep = [with] np = [the,boy,with,her]

pp = [with,the,boy,with,her]

This noun phrase is made up of anoun and a prepositional phrase

np = [the,boy] pp = [with,the,boy,with,her]

This prepositional phrase is made up of a preposition and a noun phrase
prep = [with] np = [the,boy,with,the,boy,with,her]

pp = [with,the,boy,with,the,boy,with,her]

This noun phrase is made up of anoun and a prepositional phrase

np = [the,boy] pp = [with,the,boy,with,the,boy,with,her]

This prepositional phraseis made up of a preposition and a noun phrase
prep = [with] np = [the,boy,with,the,boy,with,the,boy,with,her]

pp = [with,the,boy,with,the,boy,with,the,boy,with,her]

This noun phrase is made up of anoun and a prepositional phrase

np = [the,boy] pp = [with,the,boy,with,the,boy,with,the,boy,with,her]
This prepositional phraseis made up of a preposition and a noun phrase
prep = [with] np = [the,boy,with,the boy,with,the,boy,with,the,boy,with,her]
pp = [with,the,boy,with,the,boy,with,the,boy,with,the,boy,with,her]

This peculiarity seems to agree with Chomsky (see Chomskian Linguigtics):

Itisimpossbleto lig dl the sentences of a particular language.

This peculiarity can in one sense be seen as proof of this; dthough whilst the sentences are

gyntacticaly correct it is very unlikely that such a sentence would be uttered.

71

72

Case Filter

The next idea | had planned to implement was a Smple case filter. A case filter ams to

mode the way the brain relates certain words to other wordsin a sentence. For example:

He thought about himsdlf.
He thought about him.
We are able to understand differences in the two sentences because of the use of case. In

English there are three cases.

Nominative (subject)
Accusative (object)

Genitive (possesson)

| decided to implement a very smple filter to begin with. My am was to program a filter
that, when given a sentence could determine what case should be used and to give advice,
or even change the case of appropriate words. First | defined a smple lexicon so that |

would not need to worry about the complexities of alarger lexicon. The lexicon contained :

A verb (kicked)

A Subject (she)

An Object (her)

73

Sentences would be in the basic form of subject-verb-object (SVO). | programmed the
filter by using rules that would define a sentence written with correct use of case. The rules

are stated here;

correct_case(X) :- subject_verb(A),object(B),append(A,B,X),
nl,write(B),write(" In Correct Case),nl.

This rule states that if a sentence has the structure of subject verb object it should write out

thet it isin the correct case.

subject_verb(X) :- subject(A),v(B),append(A,B,X),
nl,write('Subject - Verb in right order),nl.

Smilarly this rule says if a subject-verb definition has the sructure of subject-verb then it

should write out that the subject and verb are in the right order.

The rules showing incorrect case where coded using the same pattern. | origindly coded the
case filter with two subject_verb rules. one for structures where the subject and verb follow
each other, and one where an object was in the place of the subject. This in retrospect was
abad idea. When the program ran it would sometimes print out duplicate information. It dso
often gave mideading results, because it would get so far in arule, only to fall and have to

backtrack.

| changed the program so that in the case of an object-verb clause being in place of a
subject-verb a separately named rule applies namely object_verb(X). The new verson now
handles smple subject-verb-object sentences and outputs appropriate advice on the case of

words in the sentences.

74

| hope to extend this smple case filter to handle more complex case issues such as vaency

and possession.

Other experiments

There are a range of other ideas that | have tried to, or would like to implement. For
example | have tried to implement an input routine, that would make it eeder to enter a
sentence. This program takes a set of words separated by spaces and terminated with afull-

sop (.). The program then converts this input into a structure of words separated by
commeas (,). Thisis a much more natural way of entering the sentence data into programs.
sentences are not words separated by commas but are words separated by spaces and

ended with afull-stop..

| particularly find the idea of transforming a declarative sentence to an interrogative sentence
very interesting. | hoped to be able to write a program that followed Chomsky’s
transformationd rules, making modifications to an entered phrase dructure tree and to

output the modified phrase structure tree.

It would be interesting to experiment with trying to find the subject of a sentence. Subjects
are very important grammatical structures. The ability to identify the subject of a sentence
would have implications for a range of possble programs. A program might be able to
identify the subject of a sentence, and then would be adle to ask questions about the

subject.

75

| did some work towards the god of arranging sentence components in the right order,
when they are passed in. This program modes wha might occur when trandating deep
sructures to surface structures. Words are passed in and the program will sort them into the

correct order for an English sentence.

| found a Government and Binding parser on the Internet and have studied the code, in the

hope of extending and/or modifying it.

76

Conclusions

Learning

Through the work | have done during the lifetime of this project, | have learned a greet dedl.
Not only have | taught mysdf the PROLOG programming language, but | now aso have a
good knowledge of current linguistic theories. Because | came fresh to linguistics and had to
work at learning and understanding linguidtic theories, | was unable to fully implement al of

what | had learned due to time congtraints.

Research Methods

The main methods of research | used in the process of writing this report were the library
and the use of the Internet. The Internet proved useful in my god of learning PROLOG:
there are alot of tutorids and FAQs available. There is information available about language
and linguigtics available on the Internet; dthough | gained most of my knowledge in this area
by the use of the library. It would be ussful for anyone consdering continuing this project to

join and read news groups and mailing lists, something which | did not do, and regret.

Tojoin the association of logic programming send E-Mail to csa@doc.ic.ac.uk

For information about the Computation and Language Electronic pre-print Server send E-

Mail to cmp-lg@xxx.lanl.gov with the subject “help”

Critical Appraisal

Throughout the writing of this report a baance had to be struck between learning linguistic
theories and learning PROLOG <0 that | could implement them as PROLOG programs. |
found this difficult, it is very hard to baance the two: knowing enough about a linguistic
theory to be able to implement it, and knowing enough PROLOG to understand how it
might be implemented. It would have been preferable to have known one area before
coming to this project; however | believe | have made a good attempt at implementing afew
key areas of a NLP program, and my knowledge is such that |1 would be able to continue

developing areasonable set of NLP procedures, that might be used in alarger program.

My knowledge of PROLOG has been my mgor sumbling block. | believe if | had spent
more time learning PROLOG a the beginning of this project | would not have had as many
problems as | did, and my code would probably be more efficient and easier to extend. |
was paticularly dis-heartened by the problems | faced in the way my parser handles
prepostiona phrases, with a better knowledge of PROLOG | am postive that these

problems could be eradicated.

78

Appendices

Glossary

Accusative. The case of the object of averb.

Adjective. One of the major syntactic categories, comprising words that typically refer to property or
state.

Article. One of the minor syntactic categories, including the words a and the. Usually subsumed in the
category determiner in contemporary theories of grammar.

Auxiliary. A special kind of verb used to express concepts related to the truth of a sentence, such as
tense, negation, question/statement, necessary/possible.

Backtracking. A term used when a parser has to revise decisionsthat it has previously made.

Bottom-up Parse. A parsing method in which starts with the individual words of a sentence and triesto
build upwards, through phrases to the compl ete sentence.

Behaviourism. A school of psychology, influential from the 1920s to the 1960s, that rejected the study
of the mind as unscientific, and sought to explain the behaviour of organismswith laws of stimulus-
response conditioning.

Case. A set of affixes, positions, or word forms that alanguage uses to distinguish the different roles of
the participantsin some event or state. Case typically correspond to the subject, object, indirect object,
and the objects of various kinds of prepositions. In English case is what distinguishes between 1, he,
she, we, they, which are used as subjects, and me, him, her, us, them, which are used as objects of
verbs, objects of verbs, and everywhere else.

Determiner. One of the minor syntactic categories, comprising the articles and similar words: a, the,
some, more, much, many.

Generative grammar. See grammar

Grammar. A generative grammar is a set of rules that determines the form and meaning of words and
sentencesin aparticular language asit is spoken in some community. A mental grammar isthe
hypothetical generative grammar stored unconsciously in aperson’s brain neither should be confused
with perscriptive grammar, which is taught in schools and explained in style guides.

Head. The single word in aphrase, that determines the meaning and properties of the whole phrase.

Lexical entry. Theinformation about a particular word (its meaning, syntactic category, etc.) storedina
dictionary.

Lexicon. A dictionary of words and meaning in alanguage.

Linguist. A scholar or scientist that studies how languages work. It does not refer to a person that
speaks multiple languages.

Main verb. A verb that is not the auxiliary.

Modal. A kind of Auxiliary.

79

Movement. The principle kind of transformational rule in Chomsky’ stheory, it moves a phrase from its
customary position in deep structure to some other unfilled position, leaving behind a“trace”.

NLP. Natural Language Processing

Natural Language. A human language like English or Japanese, as opposed to a computer language or
other formal representation.

Natural Language Processing. A school of computer science, in which Natural languages are used as
datafor computer programs. Often used for parsing or machine translation.

Nominative. The case of the subject of a sentence.
Noun. One of the major syntactic categories, comprising words that typically refer to anitem, or person.
Object. The argument next to the verb, typically refersto the entity affected by the verb

Parsing. A processinvolved in sentence comprehension in which the syntactic categories of words are
determined.

Phrase structuretree. A tree structure that shows how the words of a sentence have been broken into
their syntactic categories.

Preposition. One of the major syntactic categories, comprising words that typically refer to spatial or
temporal relationship. In, on, near

Pronoun. A word that stands for awhole noun phrase. | , me, my, you, your

Top-down parse. A parsing method in which the parser starts with a sentencerule, and triesto build its
way down, through phrases to the individual words of a sentence.

Universal Grammar. The basic design underlying the grammars of all human languages
Verb. One of the magjor syntactic categories, comprising words that typically refer to some action.
X-bar theory. The particular kind of phrase structure rules thought to be used in human language,

according to which all the phrasesin all languages conform to asingle plan. In the plan, the properties
of the whole phrase are determined by the properties of asingle element, the head of the phrase.

Code

Top-down parser/phrase-tagger

Program 1

/[* A small grammar */

/* determ nants */
det ([the]).
det([a]).

/ *nouns*/
n([boy]).
n(fgirl]).
n(fgorillal).
n([el ephant]).
n([school]).

[*verbs*/
v([remenbered]).
v([forgot]).
v([stroked]).

/* Grammar Definition */

/*

** (X) is a sentence if (A) and (B) follow each other AND

*x ((A) is a noun phrase AND (B) is a verb
phrase)

*/

s(X) :- append(A B, X), np(A),vp(B),
nl,nl,wite('np ="),wite(A),wite(' vp ="),wite(B),

nl,wite('s ="),wite(X).
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is averb AND (B) is a noun phrase)
*/
vp(X) :- append(A B, X),Vv(A), np(B),
nl,nl,wite('v ="), wite(A,wite(" np ="),wite(B),

nl,wite('vp = "), wite(X).

81

/*
** (X) is a noun phrase if (A) and (B) follow each other AND

*x ((A is a determnant AND (B) is a noun)
*/
np(X) :- append(A B, X), det(A),n(B),

nl,nl,wite('det ="'), wite(A),

wite(" n="),wite(B),

nl,wite('np ="'), wite(X).

append([],L,L).
append([X| L1],L2,[X L3]) :- append(L1,L2,L3).

Program 2

/* A small grammar */

/* determ nants */
det ([the]).
det([a]).

[*nouns*/
n([boy]).
n(fgirl]).
n([gorillal]).
n([el ephant]).
n([school]).

[*pronouns*/

p([he]).
p(lit]).
p([she]).
p([hin).
p([her]).

[*verbs*/
v([renmenbered]).
v([forgot]).
v([stroked]).
v([killed]).
v([fed]).

82

/* Granmar Definition */

/*

** (X) is a sentence if (A and (B) follow each other AND

*x ((A) is a noun phrase AND (B) is a verb
phrase)

*/

s(X) :- append(A B, X), np(A),vp(B),

nl,wite(' This sentence is made of a noun phrase and a verb
phrase'), nl,

nl,nl,wite('np ="),wite(A,wite(' vp = "), wite(B),

nl,wite('s ="),wite(X).
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is averb AND (B) is a noun phrase)
*/

vp(X) :- append(A B, X),Vv(A), np(B),

nl,wite(' This verb phrase is made up of a verb and a noun
phrase'),

nl,wite('v="),wite(A,wite(' np ="),wite(B),

nl,wite('vp = "), wite(X),nl.
/*
** (X) is a noun phrase if (A) and (B) follow each other AND
*x ((A) is a determnant AND (B) is a noun)
*/

np(X) :- append(A B, X), det(A),n(B),

nl,wite(' This noun phrase is made up froma deterni nant and a
noun'),

nl,wite('det = "), wite(A),

wite(" n="),wite(B),

nl,wite('np ="'"),wite(X).

/* a second exanple of a noun phrase */

np(X) :- p(X),wite(' This noun phrase is made up of a single
pronoun'),

nl,wite('p ="),wite(X),

wite('" np ="'),wite(X),nl.

append([],L,L).
append([X| L1],L2,[X L3]) :- append(L1,L2,L3).

Program 3

/* A small grammar */

/* determ nants */
det ([the]).
det([a]).

[*nouns*/
n([boy]).
n(fgirl]).
n([gorillal]).
n([el ephant]).
n([school]).

[*pronouns*/

p([he]).
p(lit]).
p([she]).
p([hin).
p([her]).

[*verbs*/
v([renmenbered]).
v([forgot]).
v([stroked]).
v([killed]).
v([fed]).

/*adj ectives*/
adj ([quick]).
adj ([brown]).
adj ([sly]).

/* Granmar Definition */

/*

** (X) is a sentence if (A and (B) follow each other AND

*x ((A) is a noun phrase AND (B) is a verb
phrase)

*/

s(X) :- append(A B, X), np(A),vp(B),

nl,wite(' This sentence is made of a noun phrase and a verb
phrase'), nl,

nl,nl,wite('np ="),wite(A),wite(' vp ="'),wite(B),

nl,wite('s ="),wite(X).
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is averb AND (B) is a noun phrase)
*/

vp(X) :- append(A B, X),Vv(A), np(B),

nl,wite(' This verb phrase is nmade up of a verb and a noun
phrase'),

nl,wite('v="),wite(A),wite(' np ="),wite(B),

nl,wite('vp = "), wite(X),nl.
/*
** (X) is a noun phrase if (A) and (B) follow each other AND
*x ((A is a determnant AND (B) is a noun)
*/

np(X) :- append(A B, X), det(A), n(B),

nl,wite(' This noun phrase is made up froma deterni nant and a
noun'),

nl,wite('det = "), wite(A),

wite(" n="),wite(B),

nl,wite('np ="'"),wite(X).

/*adj ectival noun phrase eg 'the sly quick brown fox' */
np(X) :- append(A B, X), det(A), ap(B),

nl,wite(' This noun phrase has a deternm nant and an adjecti val
phrase '),

nl,wite('det = "), wite(A),
wite(' ap = '), wite(B),
nl,wite('np = "), wite(X),nl.

/* a second exanple of a noun phrase */

np(X) :- p(X),wite(' This noun phrase is made up of a single
pronoun'),

nl,wite('p ="),wite(X),

wite('" np ="'),wite(X),nl.

[/ *adj ectival phrase*/

ap(X) :- append(A B, X),adj(A),n(B),

write(' This adjectival phrase is made up of an adjective and a
noun'),

nl,wite('adj = "),wite(X),

wite(' ap = '), wite(X),nl.

ap(X) :- append(A B, X),adj(A), ap(B),
nl,wite(' This adjectival phrase is nade up two or nore
adj ectives and a noun'),
nl,wite('adj = "), wite(A),wite(' ap = "'),wite(B),
nl,wite('compound ap ='), wite(X),nl.

append([],L,L).
append([X| L1],L2,[X L3]) :- append(L1,L2,L3).

Program 4

/* A small grammar */

/* determ nants */
det ([the]).
det([a]).

[*nouns*/
n([boy]).
n(fgirl]).
n([gorillal]).
n([el ephant]).
n([school]).

[*pronouns*/

p([he]).
p(lit]).
p([she]).
p([hin).
p([her]).

[*verbs*/
v([renmenbered]).
v([forgot]).
v([stroked]).
v([killed]).
v([fed]).

/*adj ectives*/
adj ([quick]).
adj ([brown]).
adj ([sly]).

[*prepositions*/
prep([with]).

prep([in]).
prep([near]).

/* Granmar Definition */

/*

** (X) is a sentence if (A and (B) follow each other AND

*x ((A) is a noun phrase AND (B) is a verb
phrase)

*/

s(X) :- append(A B, X), np(A), vp(B),

nl,wite(' This sentence is made of a noun phrase and a verb
phrase'), nl,
nl,nl,wite('np ="),wite(A),wite(' vp ="'),wite(B),

nl,wite('s ="),wite(X).
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is averb AND (B) is a noun phrase)
*/

vp(X) :- append(A B, X),Vv(A), np(B),

nl,wite(' This verb phrase is made up of a verb and a noun
phrase'),

nl,wite('v="),wite(A,wite(' np ="),wite(B),

nl,wite('vp = "), wite(X),nl.
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is a verb phrase AND (B) is
preposi ti onal phrase)
*/

vp(X) :- append(A B, X),vp(A), pp(B),
nl,wite(' This verb phrase is made up of a verb phrase and a
preposi tional phrase'),
nl,wite('vp "Y,wite(A),wite(' pp ="),wite(B),
nl,wite('vp "Y,wite(X),nl.

/*

** (X) is a noun phrase if (A) and (B) follow each other AND

*x ((A is a determnant AND (B) is a noun)
*/

np(X) :- append(A B, X), det(A),n(B),

nl,wite(' This noun phrase is made up froma deterni nant and a
noun'),

nl,wite('det = "), wite(A),

wite(" n="),wite(B),

nl,wite('np ="'"),wite(X).

/*adj ectival noun phrase eg 'the sly quick brown fox' */
np(X) :- append(A B, X), det(A), ap(B),

nl,wite(' This noun phrase has a deternm nant and an adjecti val
phrase '),

nl,wite('det = "), wite(A),
wite(' ap = '), wite(B),
nl,wite('np = "), wite(X),nl.

/* anot her noun phrase */

np(X) :- p(X),wite(' This noun phrase is made up of a single
pronoun'),

nl,wite('p ="),wite(X),

wite('" np ="'"),wite(X),nl.

87

[/ *prepositional phrase*/

pp(X) :- append(A B, X), prep(A), np(B),

write(' This prepositional phrase is made up of an preposition
and a noun phrase'),

nl,wite('prep = '), wite(A),

wite('" np ="'),wite(B),nl,

write('pp = "), wite(X),nl.

[/ *adj ectival phrase*/

ap(X) :- append(A B, X), adj (A), n(B),

write(' This adjectival phrase is made up of an adjective and a
noun'),

nl,wite('adj = "),wite(X),

wite(' ap = '), wite(X),nl.

ap(X) :- append(A B, X), adj (A), ap(B),
nl,wite(' This adjectival phrase is nade up two or nore
adj ectives and a noun'),
nl,wite('adj = "), wite(A),wite(' ap = "'),wite(B),
nl,wite('compound ap ='), wite(X),nl.

append([],L,L).
append([X| L1],L2,[X L3]) :- append(L1,L2,L3).

Program 5

/* A small grammar */

/* determ nants */
det ([the]).
det([a]).

[*nouns*/

n([boy]).

n(fgirl]).

n([gorillal]).

n([el ephant]).

n([school]).

n([saw]). /* a woodwork saw cf the verb */
n([book]).

[*pronouns*/

p([he]).
p(lit]).
p([she]).
p([hin).
p([her]).

[*verbs*/
v([renmenbered]).
v([forgot]).
v([stroked]).
v([killed]).
v([fed]).
v([saw]).

/*adj ectives*/
adj ([quick]).
adj ([brown]).
adj ([sly]).
adj ([clever]).
adj ([old]).
adj ([dusty]).

/* Granmar Definition */

/*

** (X) is a sentence if (A and (B) follow each other AND

*x ((A) is a noun phrase AND (B) is a verb
phrase)

*/

s(X) :- append(A B, X), np(A), vp(B),
nl,wite(' This sentence is made of a noun phrase and a verb
phrase'), nl,
nl,nl,wite('np ="),wite(A),wite(' vp ="'),wite(B),
nl,wite('s ="),wite(X).

89

/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is averb AND (B) is a noun phrase)
*/
vp(X) :- append(A B, X),Vv(A), np(B),

nl,wite(' This verb phrase is nmade up of a verb and a noun
phrase'),

nl,wite('v="),wite(A,wite(' np ="),wite(B),

nl,wite('vp = "), wite(X),nl.
/*
** (X) is a noun phrase if (A) and (B) follow each other AND
*x ((A is a determnant AND (B) is a noun)
*/

np(X) :- append(A B, X), det(A),n(B),

nl,wite(' This noun phrase is made up froma deterni nant and a
noun'),

nl,wite('det = "), wite(A),

wite(" n="),wite(B),

nl,wite('np ="'"),wite(X).

/*adj ectival noun phrase eg 'the sly quick brown fox' */
np(X) :- append(A B, X), det(A), ap(B),

nl,wite(' This noun phrase has a deternm nant and an adjecti val
phrase '),

nl,wite('det = "), wite(A),
wite(' ap = '), wite(B),
nl,wite('np = "), wite(X),nl.

/* a second exanple of a noun phrase */

np(X) :- p(X),wite(' This noun phrase is made up of a single
pronoun'),

nl,wite('p ="),wite(X),

wite('" np ="'),wite(X),nl.

[/ *adj ectival phrase*/

ap(X) :- append(A B, X),adj(A),n(B),

write(' This adjectival phrase is made up of an adjective and a
noun'),

nl,wite('adj = "),wite(X),

wite(' ap = '), wite(X),nl.

ap(X) :- append(A B, X),adj(A), ap(B),
nl,wite(' This adjectival phrase is nade up two or nore
adj ectives and a noun'),
nl,wite('adj = "), wite(A),wite(' ap = "'),wite(B),
nl,wite('compound ap ='), wite(X),nl.

append([],L,L).
append([X| L1],L2,[X L3]) :- append(L1,L2,L3).

Program 6

/* A small grammar */

/* determ nants */
det ([the]).
det([a]).

[*nouns*/

n([boy]).

n(fgirl]).

n([gorillal]).

n([el ephant]).

n([school]).

n([saw]). /* a woodwork saw cf the verb */

n([book]).

n([red]). /*comuni st as opposed to the col our*/

[*pronouns*/

p([he]).
p(lit]).
p([she]).
p([hin).
p([her]).

[*verbs*/
v([renmenbered]).
v([forgot]).
v([stroked]).
v([killed]).
v([fed]).
v([saw]).

/*adj ectives*/
adj ([quick]).
adj ([brown]).
adj ([sly]).
adj ([clever]).
adj ([old]).
adj ([dusty]).
adj ([red]).

/* Granmar Definition */

/*

** (X) is a sentence if (A and (B) follow each other AND

*x ((A) is a noun phrase AND (B) is a verb
phrase)

91

*/
s(X) :- append(A B, X), np(A), vp(B),

nl,wite(' This sentence is made of a noun phrase and a verb
phrase'), nl,

nl,nl,wite('np ="),wite(A),wite(' vp ="'),wite(B),

nl,wite('s ="),wite(X).
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is averb AND (B) is a noun phrase)
*/

vp(X) :- append(A B, X),Vv(A), np(B),

nl,wite(' This verb phrase is made up of a verb and a noun
phrase'),

nl,wite('v="),wite(A,wite(' np ="),wite(B),

nl,wite('vp = "), wite(X),nl.
/*
** (X) is a noun phrase if (A) and (B) follow each other AND
*x ((A is a determnant AND (B) is a noun)
*/

np(X) :- append(A B, X), det(A),n(B),

nl,wite(' This noun phrase is made up froma deterni nant and a
noun'),

nl,wite('det = "), wite(A),

wite(" n="),wite(B),

nl,wite('np ="'"),wite(X).

/*adj ectival noun phrase eg 'the sly quick brown fox' */
np(X) :- append(A B, X), det(A), ap(B),

nl,wite(' This noun phrase has a deternm nant and an adjecti val
phrase '),

nl,wite('det = "), wite(A),
wite(' ap = '), wite(B),
nl,wite('np = "), wite(X),nl.

/* a second exanple of a noun phrase */

np(X) :- p(X),wite(' This noun phrase is made up of a single
pronoun'),

nl,wite('p ="),wite(X),

wite('" np ="'),wite(X),nl.

[/ *adj ectival phrase*/

ap(X) :- append(A B, X),adj(A),n(B),

write(' This adjectival phrase is made up of an adjective and a
noun'),

nl,wite('adj = "),wite(X),

wite(' ap = '), wite(X),nl.

ap(X) :- append(A B, X), adj (A), ap(B),

nl,wite(' This adjectival phrase is nade up two or nore
adj ectives and a noun'),

nl,wite('adj = "), wite(A),wite(' ap = "'),wite(B),

92

nl,wite('compound ap ='), wite(X),nl.

append([].L,L).

append([X|] L1], L2, [X L3]) :-

Lexicon

/* A small |exicon */

/* determ nants */
det ([the]).
det([a]).

/ *nouns*/
n([boy]).
n(fgirl]).
n([gorillal).
n([el ephant]).
n([school]).

[*pronouns*/

p([he]).
p(lit]).
p([she]).
p([hin).
p([her]).

[*verbs*/
v([renmenbered]).
v([forgot]).
v([stroked]).
v([killed]).
v([fed]).

/*adj ectives*/
adj ([quick]).
adj ([brown]).
adj ([sly]).

[*prepositions*/
prep([with]).

prep([in]).
prep([near]).

Bottom-Up

append(L1,L2,L3).

Program 1

/* A small grammar */

/* Granmar Definition */

/*

** (X) is a sentence if (A and (B) follow each other AND

*x ((A) is a noun phrase AND (B) is a verb
phrase)

*/

s(X) :- np(A),vp(B),append(A B, X),

nl,wite(' This sentence is made of a noun phrase and a verb
phrase'), nl,

nl,nl,wite('np ="),wite(A,wite(' vp = "), wite(B),

nl,wite('s ="),wite(X).
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is averb AND (B) is a noun phrase)
*/

vp(X) :- v(A),np(B), append(A, B, X),

nl,wite(' This verb phrase is made up of a verb and a noun
phrase'),

nl,wite('v="),wite(A,wite(' np ="),wite(B),

nl,wite('vp = "), wite(X),nl.
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is a verb phrase AND (B) is
preposi ti onal phrase)
*/

vp(X) - vp(A), pp(B), append(A, B, X),
nl,wite(' This verb phrase is made up of a verb phrase and a
preposi tional phrase'),
nl,wite('vp "Y,wite(A),wite(' pp ="),wite(B),
nl,wite('vp "Y,wite(X),nl.

/*

** (X) is a noun phrase if (A) and (B) follow each other AND

*x ((A) is a determnant AND (B) is a noun)
*/

np(X) :- det(A), n(B), append(A B, X),

nl,wite(' This noun phrase is made up froma deterni nant and a
noun'),

nl,wite('det = "), wite(A),

wite(" n="),wite(B),

nl,wite('np ="'"),wite(X).

/*adj ectival noun phrase eg 'the sly quick brown fox' */

np(X) :- det(A),ap(B), append(A, B, X),
nl,wite(' This noun phrase has a deternm nant and an adjecti val

phrase '),
nl,wite('det = "), wite(A),
wite(' ap = '), wite(B),
nl,wite('np ="'"), wite(X),nl.

/* anot her noun phrase */

np(X) :- p(X),wite(' This noun phrase is made up of a single
pronoun'),

nl,wite('p ="),wite(X),

wite('" np ="'),wite(X),nl.

/*prepositional phrase*/

pp(X) :- prep(A),np(B),append(A, B, X),

write(' This prepositional phrase is made up of an preposition
and a noun phrase'),

nl,wite('prep = '), wite(A),

wite(" np ="'),wite(B),nl,

write('pp = "), wite(X),nl.

[/ *adj ectival phrase*/

ap(X) :- adj(A),n(B), append(A, B, X),

write(' This adjectival phrase is made up of an adjective and a
noun'),

nl,wite('adj = "),wite(X),

wite(' ap = '), wite(X),nl.

ap(X) :- adj(A),ap(B),append(A B, X),
nl,wite(' This adjectival phrase is nade up two or nore
adj ectives and a noun'),

nl,wite('adj = "), wite(A),wite(' ap = "'),wite(B),
nl,wite('compound ap ='), wite(X),nl.

append([],L,L).
append([X| L1],L2,[X L3]) :- append(L1,L2,L3).

Program 2

/* A small grammar */

/* Granmar Definition */

/*
** (X) is a sentence if (A and (B) follow each other AND
*x ((A) is a noun phrase AND (B) is a verb
phrase)
*/
s(X) :- np(A),vp(B), append(A B, X),
nl,wite(' This sentence is made of a noun phrase and a verb
phrase'), nl,
nl,nl,wite('np ="),wite(A,wite(' vp = "), wite(B),

nl,wite('s ="),wite(X).
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is averb AND (B) is a noun phrase)
*/

vp(X) :- v(A),np(B), append(A, B, X),

nl,wite(' This verb phrase is made up of a verb and a noun
phrase'),

nl,wite('v="),wite(A,wite(' np ="),wite(B),

nl,wite('vp = "), wite(X),nl.
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is a verb phrase AND (B) is

preposi ti onal phrase)

vp(X) - vp(A), pp(B), append(A, B, X),
nl,wite(' This verb phrase is made up of a verb phrase and a
prepositional phrase'),
nl,wite('vp "Y,wite(A),wite(' pp ="),wite(B),
nl,wite('vp "Y,wite(X),nl.

*/

/*

** (X) is a noun phrase if (A) and (B) follow each other AND

*x ((A is a determnant AND (B) is a noun)
*/

np(X) :- det(A), n(B), append(A B, X),

nl,wite(' This noun phrase is made up froma detern nant and a
noun'),

nl,wite('det = "), wite(A),

wite(" n="),wite(B),

nl,wite('np ="'"),wite(X).

/*adj ectival noun phrase eg 'the sly quick brown fox' */
np(X) :- det(A),ap(B), append(A, B, X),

nl,wite(' This noun phrase has a deternm nant and an adjecti val
phrase '),

nl,wite('det = "), wite(A),
wite(' ap = '), wite(B),
nl,wite('np = "), wite(X),nl.

/* anot her noun phrase */

np(X) :- p(X),wite(' This noun phrase is made up of a single
pronoun'),

nl,wite('p ="),wite(X),

wite(" np ="'),wite(X),nl.

np(X) :- np(A), pp(B), append(A B, X),

write(' This noun phrase is nade up of a noun and a
prepositional phrase'),

nl,wite('np ="'"),wite(A),

wite(' pp ="'),wite(B),nl.

[*prepositional phrase*/

pp(X) :- prep(A),np(B),append(A, B, X),

write(' This prepositional phrase is made up of a preposition
and a noun phrase'),

nl,wite('prep = '), wite(A),

wite('" np ="'),wite(B),nl,

write('pp = "), wite(X),nl.

[/ *adj ectival phrase*/

[* ap(X) :- adj(A),n(B), append(A, B, X),
write(' This adjectival phrase is made up of an adjective and a
noun'),
nl,wite('adj = "),wite(X),
wite(' ap = '), wite(X),nl.
*/
[*ap(X) :- adj (A, ap(B), append(A, B, X),
nl,wite(' This adjectival phrase is nade up two or nore
adj ectives and a noun'),
nl,wite('adj = "), wite(A),wite(' ap = "'),wite(B),
nl,wite('compound ap ='), wite(X),nl.

*/

append([],L,L).
append([X| L1],L2,[X L3]) :- append(L1,L2,L3).

Program 3

/* A small grammar */

/* Granmar Definition */

/*

** (X) is a sentence if (A and (B) follow each other AND

*x ((A) is a noun phrase AND (B) is a verb
phrase)

97

*/
s(X) :- np(A),vp(B), append(A B, X),

nl,wite(' This sentence is made of a noun phrase and a verb
phrase'), nl,

nl,nl,wite('np ="),wite(A),wite(' vp ="'),wite(B),

nl,wite('s ="),wite(X).
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is averb AND (B) is a noun phrase)
*/

vp(X) :- v(A),np(B), append(A, B, X),

nl,wite(' This verb phrase is made up of a verb and a noun
phrase'),

nl,wite('v="),wite(A,wite(' np ="),wite(B),

nl,wite('vp = "), wite(X),nl.
/*
** (X) is a verb phrase if (A) and (B) follow each other AND
*x ((A is a verb phrase AND (B) is
preposi ti onal phrase)
*/

vp(X) - vp(A), pp(B), append(A, B, X),
nl,wite(' This verb phrase is made up of a verb phrase and a
preposi tional phrase'),
nl,wite('vp "Y,wite(A),wite(' pp ="),wite(B),
nl,wite('vp "Y,wite(X),nl.

/*

** (X) is a noun phrase if (A) and (B) follow each other AND

*x ((A is a determnant AND (B) is a noun)
*/

np(X) :- det(A), n(B), append(A B, X),

nl,wite(' This noun phrase is made up froma deterni nant and a
noun'),

nl,wite('det = "), wite(A),

wite(" n="),wite(B),

nl,wite('np ="'"),wite(X).

/*adj ectival noun phrase eg 'the sly quick brown fox' */
np(X) :- det(A),ap(B), append(A, B, X),

nl,wite(' This noun phrase has a deternm nant and an adjecti val
phrase '),

nl,wite('det = "), wite(A),
wite(' ap = '), wite(B),
nl,wite('np = "), wite(X),nl.

/* anot her noun phrase */

np(X) :- p(X),wite(' This noun phrase is made up of a single
pronoun'),
nl,wite('p ="),wite(X),

wite(" np ="'),wite(X),nl.

[*prepositional phrase*/

pp(X) :- prep(A),np(B),append(A, B, X),

write(' This prepositional phrase is made up of an preposition
and a noun phrase'),

nl,wite('prep = '), wite(A),

wite('" np ="'),wite(B),nl,

write('pp = "), wite(X),nl.

[/ *adj ectival phrase*/

[* ap(X) :- adj(A),n(B), append(A, B, X),
write(' This adjectival phrase is made up of an adjective and a
noun'),
nl,wite('adj = "),wite(X),
wite(' ap = '), wite(X),nl.
*/
[*ap(X) :- adj (A, ap(B), append(A, B, X),
nl,wite(' This adjectival phrase is nade up two or nore
adj ectives and a noun'),
nl,wite('adj = "), wite(A),wite(' ap = "'),wite(B),
nl,wite('compound ap ='), wite(X),nl.

*/

| * 9088888880

% 'read_sentence' provides the ability to get input
% in a natural fashion by typing in words separated

% by spaces and termnated with a period. Adapted
% from _Prolog and Natural Language Anal ysis_ by
% Pereira and Schieber.

%

W8N |

read_sentence(lnput) :- getO(Char), read_sentence(Char, | nput).

read_sentence(Char,[]) :- period(Char),!.

read_sentence(Char, I nput) :- space(Char),!, get0(Charl),
read_sentence(Charl, | nput).

read_sentence(Char, [Wrd| Wrds]) :- read_word(Char, Chars, Next),

name(Wor d, Chars),
read_sent ence(Next, Wor ds) .

read_ word(C,[],C :- space(QO),!.

read_ word(C,[],C :- period(C,!.

read_wor d(Char, [Char| Chars], Last) :- getO(Next),
read_wor d(Next, Chars, Last).

space(32).
peri od(46).

parse_sentence :- read_sentence(Sentence),wite(' This here'),nl,
write(Sentence).

append([],L,L).
append([X| L1],L2,[X L3]) :- append(L1,L2,L3).

Case Filter

Program 1 - Original attempt
v([kicked]).

obj ect ([her]).
subj ect ([she]).

correct_case(X) :- subject_verb(A), object(B), append(A, B, X),
nl,wite(B),wite(' In Correct Case'),nl.

correct _case(X) :- subject_verb(A), subject(B), append(A, B, X),
nl,wite(B),wite(' in wong case, use
accusative'),nl.

subj ect _verb(X) :- object(A),v(B), append(A, B, X),
nl,wite('Oject - Verb In the wong order'),nl,
write('Use the nom native case of '), wite(A).

subj ect _verb(X) :- subject(A),v(B), append(A B, X),
nl,wite(' Subject - Verb in right order'),nl.

append([].L,L).
append([X| L1],L2,[X L3]) :- append(L1,L2,L3).

100

Program 2 -- amended

v([ki cked]).

obj ect ([her]).
subj ect ([she]).

correct _case(X) :- append(A, B, X), subj ect_verb(A), obj ect(B),

nl,wite(B),wite(' In Correct Case'),nl.

correct _case(X) :- append(A, B, X), obj ect_verb(A), subject(B),
nl,wite(B),wite(' in wong case, use
accusative'),nl.

obj ect _verb(X) :- append(A B, X), obj ect(A), v(B),
nl,wite('Oject - Verb In the wong order'),nl,
write('Use the nom native case of '), wite(A).

subj ect _verb(X) :- append(A, B, X), subject(A),v(B),
nl,wite(' Subject - Verb in right order'),nl.

append([],L,L).
append([X| L1],L2,[X L3]) :- append(L1,L2,L3).

Government Binding Parser

/* CGB.PL */

988888
% "G bberish" -- A GB'ish parser!
%

% Afirst attenpt at a Governnent-Binding (GB) type

% parser. This parser is intended as an introductory
% 'toy' parser for NLU courses, so conplexity will be
% kept to a mininumwhile still being general enough
% to be easily extended. All constraints have been

% been inplenented as explicit prolog goals for

% perspicuity. Many optim zations are possible! The
% gappi ng nechani sm actually perfornms a transformation
% of the sentence into a 'normal' form and so has been
% made general enough to nove arbitrary structures

% through the parse tree.

%

% Author: Caneron Shell ey

% Address: cpshelley@iol et.waterl oo. edu

% University of Waterl oo

%

/[* GB.PL */

101

% Comments are wel cone!

%

% This software is released into the public domain on the
% condition that the author is cited as such, and all

% nodifications remain in the public domain; and this

% condition is inposed on all subsequent users.

%

% Mbdification History:

00 m e e e e e e e e oo oo

% Jan 17/91 - creation

% Feb 4/91 - fixed nodal (nil) matching bug in "nodal-2".

% Feb 4/91 - added general conjunction rule "conj".
% (idea from Steve Green -- thanks Steve!)
%

9888888

parse :- read_sentence(Sentence),

sent ence(Struc, Sentence, []),
print_struct(Struc).

9888888
% 'sentence' will parse the basic np,vp structure
% at the top level. Different sentence types wll

% be added (ie. questions).
%
% sentence(

% Struc : return structure from sentence call
%)

%

9BB8B8%

%
% normal sentence
%

sentence(Struc) -->
noun_phr ase(Np, Per s, Nnum nogap, nogap),
{Nnum = Vnunt,
verb_phrase(Vp, Pers, Vhum nogap) ,
{Struc = s(Np, Vp)}.

%
% question with nodal transformed to initial position
%

sentence(Struc) -->
nodal (M _, , , _,nogap,_),
noun_phr ase(Np, Per s, Nnum nogap, nogap),
{Nnum = Vnunt,
verb_phrase(Vp, Pers, Vnum M,
{Struc = q(Np, Vp)}.

9888888

% 'noun_phrase' will parse the various types of np's and

% shoul d subcategorize between np's and sbars at some point.
% Al so, proper nouns and pronouns can be treated as speci al

102

% np's in this system

%

% noun_phrase(

% Struc : return structure,

% Pers : np 'person' = first | second | third,
% Nnum : np 'nunber' = sing | plur,

% Gap . transformed np (if any),

% Gapout: output gap if Gap not resolved

%)

%

%8B8880

noun_phrase(Struc, Pers, Nnum Gap, Gapout) -->
(1.
{Gap =.. [np|_]},
{Gapout = nogap},
{Struc = Gap}.

noun_phrase(Struc, Pers, Num Gap, Gapout) -->
det er mi ner (Det, Dnun),
{Nnum = Dnunt,
noun_bar (Nbar, Nnunj ,
{Pers = third},
{ Gapout = Gap},
{InStruc = np(Det, Nbar)},
conj (Struc, I nStruc, Nnum Num np) .

%

% determiner is the noun phrase specifier

%

% determ ner(

% Struc : return structure,

% Dnum : det 'nunber' = sing | plur

%)

%

% No determiner is considered to pluralize the np, ie:
% "cats go" but not *"cat goes". The default could be
% changed to "all" or "sone" if desired.

%

determi ner(Struc, Dhum) --> [Word], {lexdet(Word,Dhnum}, {Struc =
det (Word)}.
determiner(Struc, Dnum) --> [], {Dnum = plur}, {Struc = det(nil)}.

| exdet (the,).
| exdet (a, si ng).
| exdet (an, si ng) .

%
% noun_bar is here just a noun with argunments. A treatnent
% of adjectives should be added.

%

% noun_bar (

% Struc : return structure,

% Nnum : noun 'nunber' parsed = sing | plur
%)

%

103

noun_bar (Struc, Nnum -->
noun(N, Nnum,
noun_ar gs(Nnod) ,
{Struc = nbar (N, Nnmod) }.

%
% mass nouns shoul d be considered as noun_bars in this systemn
%

noun(Struc, Nnum) --> [Word], {Nnum
{Struc = noun(Word)}.

noun(Struc, Nnum) --> [Word], {Nnum
{Struc = noun(Word)}.

sing}, {lexnoun(Word,)},

plur}, {lexnoun(_,Wrd)},

| exnoun(cat, cats).

| exnoun(dog, dogs) .

I exnoun(st anp, st anps) .

I exnoun(of fice, offices).
| exnoun(car, cars).

I exnoun(man, nmen) .

| exnoun(chance, chances) .
I exnoun(house, houses) .

| exnoun(bar, bars).

%

% noun_args here allows only pp's or nil's. Handling of
% enbedded sentences can be added as suggest ed.

%

% noun_args(

% Struc : return structure

%)

%

noun_args(Struc) -->
prep_phrase(Pp),
{Struc = n_args(Pp)}.

%oun_args(Struc) -->
% sentence_bar (Sh),
% {Struc = n_args(Sh)}.

noun_args(Struc) -->

[1.
{Struc = n_args(nil)}.

9888888

% 'verb_phrase' will parse off the predicate of a sentence
% Auxiliaries could be added as suggested. Sensitivity to
% tense would al so be handy.

%

% verb_phrase(

% Struc : return structure,

% Moers : 'person' of subject input to nodal
% Mhum : ' nunber' of subject input to nodal
% Myap : gap (if any) input to noda

%)

%
% ' Xpers' and ' Xnunml represent constraints passed to the

104

% verb phrase which nay be altered by the conmponents and
% passed to the next conponent as 'Ypers' or 'Ynum, ie.
% Mpers ==> Vpers.

%

Y8888

verb_phrase(Struc, Mpers, Mium Myap) -->
nodal (M Moer s, Vper s, Mhum Vbnum Myap, Vbgap) ,
ver b_bar (Vb, Vpers, Vbnum Vbgap),
{InStruc = vp(M Vb)},
conj (Struc, I nStruc, Mpers, Mhum vp) .

%

% 'verb_bar' parses a verb followed by arguments, if any.

% Auxiliaries can be handl ed as specifiers before the actual
% verb is read. Subcategorization (Scat) could al so be nmade
% nore detail ed.

%

% verb_bar(

% Struc : return structure,

% Pers : 'person' of subject (check for agreenent),

% Vnum : 'nunber' of subject (check for agreenment again),
% Pgap : transformed np frompredicate (if any)

%)

%

% {Gapout = nogap} ensures that the parse doesn't end with
% an unresolved structure being gapped.

%

verb_bar(Struc, Pers, Vhum Pgap) -->
ver b(V, Pers, Vnum Scat),
predi cat e(P, Pgap, Gapout, Scat),
{Gapout = nogap},
{Struc = vbar(V,P)}.

%

% 'nmodal' accepts the specifier of a vp. It should be
% expanded to help conpute the nobod and tense of the
% sentence.

%

% nodal (

% Struc : return structure,

% Moers : 'person' of subject np,

% Vpers : 'person' resulting from'nodal' ("nil" if found),
% Mhum : ' nunber' of subject np,

% Vbnum : ' nunber' resulting from'nodal' ("inf" if found),
% Myap : transfornmed nodal (if any),

% Vbgap : gap resulting from ' nodal' (unchanged if found)
%)

%

nodal (St ruc, Mpers, Vpers, Mhum Vonum Myap, Vbgap) --> [Wrd],

{I exmodal (Wrd)}, {Vbgap = Mjap}, {Vbnum = inf},

{Vpers = nil}, {Struc = nodal (Word)}.
nodal (St ruc, Mpers, Vpers, Mhum Vbnum Myap, Vbgap) --> [],

{Myap =.. [modal |[[X]]}, {X \==nil}, {Vbgap = nogap}, {Vbnum =
inf},

{Vpers = nil}, {Struc = Mgap}.

105

nodal (Struc, Mpers, Vpers, Mhum Vonum Myap, Vbgap) --> [],
{Myap = nogap}, {Vbgap = nogap}, {Vbnum = Mun},
{Vpers = Moers}, {Struc = nmodal (nil)}.

| exnodal (can) .

| exmodal (coul d) .
| exmodal (will).

| exmodal (woul d) .
| exmodal (shal l') .
| exmodal (shoul d) .

%

% 'verb' parses the verb fromthe input if it is found in
% the lexicon. "lexverb" could contain nmore info on the

% verb.

%

% verb(

% Struc : return structure,

% Pers : 'person' of the subject (for agreenent check),
% Vnum : ‘'nunber' of the subject (for agreement check again!),
% Scat : SubCATegory of the verb =

% dt (ditransitive : two objects) |

% tv (transitive : one object) |

% iv (intransitive : no objects)

%)

%

verb(Struc, Pers, Vnum Scat) --> [Word],
{Pers \'== third; Vnum = plur}, {lexverb(Scat,Wrd, ,)},
{Struc = verb(Wrd)}.

verb(Struc, Pers, Vnum Scat) --> [Word],
{Pers = third}, {Vnum = sing}, {lexverb(Scat, ,Wrd,)},
{Struc = verb(Word)}.

verb(Struc, Pers, Vnum Scat) --> [Word],
{Vhum\ == inf}, {lexverb(Scat, , ,Wrd)},
{Struc = verb(Word)}.

| exverb(dt, gi ve, gi ves, gave) .

| exverb(tv, have, has, had).

| exverb(tv, see, sees, saw).

| exverb(iv, go, goes, went).

| exverb(tv, want, want s, want ed) .
| exverb(tv,drive, drives, drove).

%

% 'predicate' parses the subcategorized dt, tv, or iv argunents
% of the verb.

%

% predicate(

% Struc : return structure,

% Pgap : transformed np gap (if any),
% Gapout: output any unresol ved gap,
% Scat : SubCATegory to be returned
%)

%

predi cat e(St ruc, Pgap, Gapout, Scat) -->
{Scat = dt},

106

noun_phrase(Npl, _, _, nogap, _),
noun_phrase(Np2, , , Pgap, Gapout),
{Struc = pred(Npl, Np2)}.

predi cat e(St ruc, Pgap, Gapout, Scat) -->

{Scat = tv},
noun_phrase(Np, _, , Pgap, Gapout),
{Struc = pred(Np)}.

predi cat e(St ruc, Pgap, Gapout, Scat) -->

{Scat = iv},

[1.

{ Gapout = Pgap},
{Struc = pred(nil)}.

%888

%

"prep_phrase' does the obvious. Gapping could be introduced

% to handle transforned pp's (but | doubt it :).
%

% prep_phrase(

% Struc : return structure

%)

%

%8888

prep_phrase(Struc) -->

preposition(P),

noun_phrase(Np, _, _, nogap,),
{InStruc = pp(P, Np)},
conj (Struc, InStruc, , _, pp).

preposition(Struc) --> [Word], {lexprep(Wrd)}, {Struc = prep(Wrd)}.

| exprep(to).

| exprep(from.
| exprep(by).

| exprep(of).

| exprep(for).
| exprep(with).

9888888

% 'conj' will parse off a conjuction followed by a constituent
% of category 'Cat'. The result will be the right sister of
% the previously parsed structure passed in.

%

% conj(

% QutStruc : result structure from conj,

% InStruc : previous structure parsed,

% Argl . first constraint on constituent,

% Arg2 . second constraint on constituent,

% Cat . category of new structure to be parsed

%)

%

% By McCawl ey's usage (McCawl ey 1988, Vol 1 & 2), constituents
% should only be conjoined to others of the same category; ie.
% np "and" np, vp "or" vp, etc. If no conjunction is found
% (conj-2,3), then the result structure is unchanged.

%

107

%888

conj (Qut Struc, InStruc, Argl, Arg2, Cat) -->
conj unction(C, Num,
construct (Constr, Cat, Argl, Arg2, Num,
{QutStruc =.. [Cat,InStruc, C, Constr]}.

conj (Struc, Struc, _, _,vp) -->[].
conj (Struc, Struc, Arg, Arg,) -->1[].

conjunction(conj (Word), Num) --> [Wrd], {lexconj(Wrd, Num}.

| exconj (and, pl ur).
| exconj (or, sing).

%

% the neaning of the last three args for 'construct' depend

% on which constituent is being parsed. For np, the nunber

% of the conjoined np is the 'nunmber' of the first conjunction.
% This is just a convenient heuristic. For vp, the person

% and nunber nust still agree across conjunction. For pp,
% no such constraints are necessary.
%

construct(Struct, np, _, Num Nunm) -->
noun_phrase(Struct, , ,nogap,).

construct(Struct, vp, Pers, Vhum) -->
verb_phrase(Struct, Pers, Vhum nogap) .

construct(Struct,pp,_,_,) -->
prep_phrase(Struct).

9888888
% 'read_sentence' provides the ability to get input
% in a natural fashion by typing in words separated

% by spaces and termnated with a period. Adapted
% from _Prolog and Natural Language Anal ysis_ by
% Pereira and Schieber.

%

9888888

read_sentence(lnput) :- getO(Char), read_sentence(Char, | nput).

read_sentence(Char,[]) :- period(Char),!

read_sentence(Char, I nput) :- space(Char),!, get0(Charl),
read_sentence(Charl, | nput).

read_sentence(Char, [Wrd| Wrds]) :- read_word(Char, Chars, Next),

name(Wor d, Chars),
read_sent ence(Next, Wor ds) .

read_ word(C,[],C :- space(QO),!.

read_ word(C,[],C :- period(C,!.

read_wor d(Char, [Char| Chars], Last) :- getO(Next),
read_wor d(Next, Chars, Last).

space(32).
peri od(46).

108

Phrase Structure Diagram Printer

/* PRETTY.PL */

%
% From psm el ke@ otus. waterl oo. edu (Peter M el ke)
% Thanks, Pete!

%

% print a structure tree

%

% eg. print_struct(a(b,c,d(e,f))) gives:

%

% a(

% b,

% c,

% d(

% ,

% f

%)

%))

%

print_struct(Tree) :-
Tree =.. List,
p_struct (0, List), nl.

%

%the first element of the list is the nane of the "functor”

% fromthe =.. comuand

%

p_struct(_,[]).
p_struct (Num [Head| Li st]) :-

is_sarg(List), !,

nl, tab(Num), wite(Head), put(40), %l eft bracket

put (32), get_head(El enent, List),wite(El ement), put(32), put(41).
p_struct (Num [Head| Li st]) :-

nl, tab(Num), wite(Head), put(40), %l eft bracket

Nun2 is Num + 4,

p_list(Nung, List).

%
% a lousy way to see if the function only has a single arguenent
%
is_sarg([]).
is_sarg([Head| Tail]) :-
Tail =1],
atonm(Head).

%
% an even | ousier way of getting an elenent out of a single |ist

(i.e. [a])
%
get _head(Head, [Head|_]).

%
% prints out the list of terms for a "functor”

109

%
p_list(_[]) :-
put (41). % finishing right bracket
p_list(Num]|[Head|List]) :-
atom(Head), !,
nl, tab(Num, wite(Head), p_comma(List),
p_list(NumList).
p_list(Num]|[Head|List]) :-
Head =.. Subli st,
p_struct (Num Sublist),
p_comma(List),
p_list(NumList).

%
% print a conma only if we are NOT at the end of the I|ist
%
p_comua([]).
p_commua(_) :-
put (44).

110

URLS of interest

below you will find a selection of Internet sites with interesting material relating to this project.

Http://www.uni-verse.com/ Uni-Verse Real-time Trandation
http://www.systransoft.com/ SYSTRAN
http://www.nyu.edu/pages/linguistics/ Linguisticsat New Y ork University

http://almond.srv.cs.cmu.edu/af s/cs/project/ai-repository/ Al repository
http://bobo.link.cs.cmu.edu/dougb/playground.html The Natural Language Playground
http://linguistlist.org/ TheLinguist list
http://ciips.ee.uwa.edu.au/~hutch/research/seminars/talk2/sild001.htm How to pass the Turing test

http://www.dcs.ex.ac.uk/~masoud/Y azdani/course/prolog/ A Prolog course

1m

Bibliography
The word crunchers. The Guardian On-line supplement November 27 1997 (page 3)

Akmgjin, Demerset d. Linguidtics: An Introduction to Language and Communication,
Fourth Edition, M.I.T. Press, 1995

Bar & Feigenbaum. The Handbook of Artificid Intdligence: Volume 1,
Pitman Books Limited 1983.

Bar & Feigenbaum. The Handbook of Artificid Intdligence: Volume 2,
William Kaufmann Inc. 1982.

Blake. Case. Cambridge University Press 1994.

Boden. Artificid Intelligence and natural Man: second ediition, expanded. The M.I.T. Press
1987.

Bratko. PROLOG: Programming For Artificid Intelligence, second edition. Addison-
Wedey 1991.

Cook & Newson. Chomsky’s Universal Grammar: An Introduction, second edition.
Blackwell 1996.

Dougherty. Natura Language Computing: An English Generaive Grammar in Prolog.
Lawrence Erlbaum Associates, 1994.

Gazdar & Mdlish. Natura Language Processing in PROLOG: An Introduction to
Computationd Linguistics. Addison-Wedey, 1989.

Green & Coulson. Language Understanding: Current Issues, Second Edition.
Open University Press, 1995.

Hutchins & Somers. An Introduction To Machine Trandation. Academic Press, 1992.

McHae & Myaeng. Integration of conceptua graphs and government-binding theory.
Butterworth-Heinmann. 1992

Pinker. The Language Ingtinct. Penguin 1995.

Russl & Norvig. Artificid Intelligence: A Modern Approach. Prentice-Hall. 1995.

112

113

